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Abstract 
Purpose – This study aims to investigate, for the first time in the literature, the stochastic properties of the 
US aggregate health-care price inflation rate series, using the data on health-care inflation rates for a panel of 
17 major US urban areas for the period 1966-2006. 
Design/methodology/approach – This goal is undertaken by applying the first- and second-generation 
panel unit root tests and the panel stationary test developed recently by Carrion-i-Silvestre et al. (2005) that 
allows for endogenously determined multiple structural breaks and is flexible enough to control for the 
presence of cross-sectional dependence. 
Findings – The empirical findings indicate that after controlling for the presence of cross-sectional 
dependence, finite sample bias, and asymptotic normality, the US aggregate health-care price inflation rate 
series can be characterized as a non-stationary process and not as a regime-wise stationary innovation 
process. 
Research limitations/implications – The research findings apply to understanding of health-care 
sector price escalation in US urban areas. These findings have timely implications for the understanding of 
the data structure and, therefore, constructs of economic models of urban health-care price inflation rates. The 
results confirming the presence of a unit root indicating a high degree of inflationary persistence in the health 
sector suggests need for further studies on health-care inflation rate persistence using the alternative 
measures of persistence. This study’s conclusions do not apply to non-urban areas. 
Practical implications – The mean and variance of US urban health-care inflation rate are not constant. 
Therefore, insurers and policy rate setters need good understanding of the interplay of the various factors 
driving the explosive health-care insurance rates over the large US metropolitan landscape. The study 
findings have implications for health-care insurance premium rate setting, health-care inflation econometric 
modeling and forecasting. 
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Social implications – Payers (private and public employers) of health-care insurance rates in US urban 
areas should evaluate the value of benefits received in relation to the skyrocketing rise of health-care 
insurance premiums. 
Originality/value – This is the first empirical research focusing on the shape of urban health-care inflation 
rates in the USA. 

Keywords Cross-sectional dependence, Health-care price inflation rate, Multiple structural breaks, 
Panel unit root tests 

Paper type Research paper 

1. Introduction 
Applied economists are increasingly interested in studying the relationship between 
inflation and other economic variables (Thanh, 2015; Nguyen, 2015). This requires 
stationarity of the time-series data of the variables, in levels or when differenced, to avoid 
spurious regression parameter estimates. More specifically, for decades, economists have 
been testing whether the inflation rate series are stationary at the regional or national level 
in developed countries and in varying panels of the Organization for Economic Cooperation 
and Development (OECD) countries (Rose, 1988; Johansen, 1992; Culver and Papell, 1997; 
Ericsson et al., 1998; Crowder and Wohar, 1999; Lee and, 2001; Rapach, 2002; Holmes, 2002; 
Charmeza et al., 2005; Basher and Westerlund, 2006; Lee and Chang, 2007; Romero-Ávila 
and Usabiaga, 2009a, 2009b). However, empirical evidence on the stochastic properties of the 
inflation rate series is mixed. For example, while Lee and Chang (2007) and Culver and 
Papell (1997) claim that inflation rates in the OECD countries are stationary, integrated of 
the order of zero, I (0), Rodrizuez (2004) and Arize (2005) report that inflation rates in the 
Latin American and many developing countries are non-stationary, respectively, and 
therefore, they are integrated of the order one, I (1). 

Whether the inflation rate is stationary or not has policy implications. If, for instance, the 
inflationary rate series is non-stationary and therefore has a unit root, then statistical 
inference in econometric modeling using such a variable will be spurious. Also, monetary 
policy actions in the presence of non-stationary inflation rate will result in permanent shocks 
to the system and therefore the inflation rate will not be mean reverting. Moreover, findings 
on stochastic properties of the inflation rate have theoretical implications for the validity of 
the Phillips curve phenomenon, the relevance of the Keynesian theory, and inter-temporal 
allocation decisions concerning saving and investment. The presence of a unit root in the 
inflation rate series and the attendant problem of persistence are of significance for policy 
effectiveness, inflation rate forecasting and the underlying theoretical models – see Levin 
and Piger (2004), O’Reilly and Whelan (2004) and Corvoisier and Mojon (2005). Therefore, 
fiscal and monetary policy authorities should be aware of the degree of persistence of 
inflation rate and, therefore, the differences in speed of its adjustment when designing 
effective inflationary containment policies. For example, if the aggregate inflation rate is 
non-stationary, I � (1), and hence highly persistent, monetary policy actions aimed at 
containing the inflation rate will be futile and result in a permanent effect. 

Consequently, economists, economic analysts and policy decision makers currently seek an 
understanding and evaluation of the time-series properties of inflation rates based on data at 
various aggregation levels. This is particularly important in the case of health-care price 
inflation rate (hereafter, health-care inflation rate) in urban areas. More specifically, the 
emerging evidence from health-care markets from implementing the 2010 US Affordable Care 
Act (ACA) reveals wide variances in the health-care coverage insurance rates, costs and prices 
across the major urban areas, even for preventive primary care visits[1]. More recently (Joszt, 
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2015), the Healthcare Cost Institute (HCI) created the Healthy Marketplace Index, a series of 
metrics measuring the economic performance (e.g. pricing) in health-care markets across the 
USA. The HCI’s price index larger (smaller) than 1.0 indicates health-care markets with higher 
(less) than average prices[2]. This suggests that when designing health-care policies, it is critical 
to provide the insurers and policy makers with reliable guidance as to whether health-care price 
increases are stationary, using panel unit root tests that have more statistical power and 
relatively less size distortions. Implicit in the presence and persistence of a unit root in health- 
care inflation rates at the panel level are the roles of some major determinants of the adjustment 
speed of health-care prices (e.g. transportation cost variations, information asymmetries, 
market power variations in the relevant local market, medical technology adoption and 
diffusion rates, and the prevalence of different health-care-related institutional factors) play in 
various US urban areas. These important influences affect the degree of persistence of health- 
care inflation rate at both the aggregate and urban areas levels and hence on the degree of 
integration of the health-care inflation rate variable leading to the tendency for aggregation 
bias in unit root testing. 

As discussed above, while there exists in the literature a number of econometric studies 
on the stochastic properties of the overall inflation rate and persistence in the USA, the UK 
and the OECD countries, and many econometric studies exploring the degree of integration 
of the health-care expenditure variable in these countries, no attempts are yet undertaken to 
explore the stochastic properties of the health-care inflation rates despite widespread global 
concerns for the rising health-care prices – see Gerdtham and Jonsson (2000), Murthy and 
Okunade (2000)[3] and Newhouse (1977). Moreover, Murthy and Okunade (2016), Okunade 
and Murthy (2002) and Bodenheimer (2005), among others, had alluded to the role and 
nature of technological change in the rise of US health-care costs and thus the price inflation. 
So as to fill this void, for the first time in the health economics literature, our current study, 
by utilizing the annual aggregate health-care inflation rate and the panel data of health-care 
inflation rate data from 17 major US urban areas for the period 1966-2006, applies a battery 
of the univariate, first- and second-generation panel unit root tests, the panel Lagrange 
multiplier (LM) unit root test that allows for two structural breaks recently developed by Im 
et al. (2005) and the recent panel unit root test of Carrion-i-Silvestre et al. (2005) that allows 
for endogenously determined multiple structural breaks experienced by individual members 
of the panel and is flexible enough to control for the presence of cross-sectional dependence 
(CD). 

The goal of this paper is, therefore, to empirically study, by employing recent panel unit 
root techniques, whether the US health-care inflation rate series is stationary, using panel 
data from major urban areas in the US. Section 2 of this work covers the data, study 
methodology and the panel unit root testing methods. Section 3 discusses the empirical 
findings, and Section 4 concludes. 

2. Data, methodology and panel unit root tests 
Data on the aggregate US medical care consumer price index (CPI) inflation rate and the US 
urban area medical care CPI inflation rates for 17 large urban areas for the period 1966-2006 
are obtained from Bureau of Labor Statistics – BLS (2007) (http://data.bls.gov/PDQ/outside. 
jsp?survey=cu). The BLS computes annual health-care inflation rates using the 1982-1984 = 
100 as the base period. Details of the urban areas included in the analysis are given in the 
appendix. Data summary statistics in Table I show greater variations in the health-care 
price rise for some urban areas (e.g. Houston-Galveston; Kansas City) than others (e.g. 
Boston; Philadelphia-Wilmington). The mean annual rate of health-care price rise, greatest 
in Cincinnati-Hamilton, Boston-Brockton and Philadelphia-Wilmington areas, may arise 
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from their greater incomes, demographics, more generous insurance coverage and greater 
use intensity of frontier medical treatment technologies and testing procedures 
(innovations). 

With regard to the methodology for investigating the stochastic properties of the US 
health-care inflation rate series at the aggregate level, this paper applies the univariate, 
panel unit root tests and panel unit root tests that allow for structural breaks. The univariate 
unit root tests that are applied in this paper are the augmented Dickey–Fuller (ADF) tests, 
the Phillips–Perron tests and the Kwiatkowski et al. (1992) tests. While the ADF, Phillips 
and Perron (1988) and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) tests define the 
null hypothesis of the presence of a unit root (non-stationarity), the KPSS maintains the null 
of stationarity. 

The Phillips–Perron unit root test is an alternative non-parametric test correcting 
for serial correlation in the series (Baltagi, 2005; Breitung and Pesaran, 2005; Murthy, 
2007). As the univariate unit root tests lack power, at the outset we use some well- 
known first- and second-generation panel unit root tests to enhance power and 
minimize size distortions. The first-generation panel unit root tests that are applied in 
this paper are the Levin–Lin–Chu (LLC; Levin et al., 2002), Im–Pesaran–Shin (IPS; Im 
et al., 2003), Breitung (2000) and, finally, the Hadri (2000) tests. A brief theoretical 
description of these tests is presented as follows: Let the data generating process of the 
series y, in its difference form, be: 

Dyit ¼ ayit� 1 þ
Xpi

j¼1

b ijDyit� j þ X 0d þ « it (1)  

where i = 1, 2, 3, . . ., N representing cross-sections and t = 1, 2, 3, . . ., T denoting time period 
observations. Xit are the exogenous variables such as individual effects and linear trends, 
a = (r – 1), and r i are the autoregressive coefficients. The LLC, Breitung and Hadri tests 
assume that the autoregressive coefficients in (1) are identical across the panel (common unit 

Table I.  
Average annual 
health-care inflation 
rates 1966-2006: US 
aggregate and major 
urban areas  
(1982-1984 = 100)  

Urban area (abbreviated label) 
Health-care inflation rate 

Mean Maximum Minimum SD  

Atlanta – GA   6.493   13.015   � 1.231   3.241 
Boston – Brockton   7.165   12.097   3.209   2.554 
Chicago   6.564   12.869   2.326   2.827 
Cincinnati – Hamilton   6.811   11.977   14.878   3.227 
Dallas – Fort Worth   6.357   14.878   0.311   3.227 
Detroit – Ann Arbor   6.635   15.068   0.187   2.767 
Houston – Galveston   6.594   13.984   1.316   3.498 
Kansas City, MO – KS   6.381   14.178   � 1.037   3.481 
Los Angeles – Riverside   6.668   14.756   1.354   3.295 
Milwaukee – Racine   6.434   12.409   1.499   2.884 
New York – North New Jersey   6.581   12.719   2.902   2.606 
Philadelphia – Wilmington   7.069   13.594   2.312   2.569 
Pittsburgh – Pennsylvania   6.592   12.611   1.508   3.054 
Portland – Salem   6.557   12.747   2.528   2.838 
Saint Louis – MO   6.459   14.181   1.907   2.859 
San Francisco – Oakland   6.450   14.940   2.018   3.000 
Seattle – Tacoma   6.303   12.462   1.955   2.909   
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root process), whereas in the IPS test, they are free to vary. In the LLC test, the null 
hypothesis is the presence of a unit root for all i, and the alternative hypothesis requires that 
the individual process is stationary for all i, and in the IPS test, while the null hypothesis is 
the same, the alternative is stated to include a non-zero fraction of the individual process as 
stationary. Im et al. (2003) derive a panel unit root test statistic, tIPS, called the IPS statistic, 
expressed as: 

tIPS ¼

ffiffiffiffi
N
p

t � 1
N

XN

i¼1

E tiT jr i ¼ 0
� �

0

@

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

Var tiT jr i ¼ 0
� �

v
u
u
t

(2)  

In equation (2), based on the simple Lindberg–Levy theorem, especially when the number of 
observations is extremely large, the test statistic is asymptotically distributed as N (0.1). Im 
et al. (2003) provide tabulated values of the mean and variance for standardizing the test 
statistic – see Im et al. (2003). On the other hand, the Maddala and Wu (1999) test, which is a 
Fisher (1932) type test that combines the p-values, p i of each of the N individual cross- 
sections’ ADF regressions. The Maddala and Wu (MW) panel unit root test statistic is 
defined as follows: 

MWl ¼ � 2
XN

i¼1

‘np i (3)  

The MW l statistic is distributed as a x 2 with 2N degrees of freedom. Similarly, the 
Phillips–Perron Fisher-type panel unit root test combines the p-values, p i of the individual 
cross-sections’ Phillips–Perron regressions. 

The panel unit root tests discussed above assume that the cross-sectional units 
(members) are independent. But in the urban area health-care markets, cross-sectional 
correlation does arise because of such factors as the spillover effects, integration of markets, 
omitted observed factors, health-care cost-consolidation, economies of scope in hospital 
operating costs, residual interdependence and diffusion of medical care technology. 

Therefore, econometric modeling in a panel context does require accounting for the CD 
phenomenon. Moreover, some econometricians have demonstrated that panel unit roots that 
ignore CD suffer from severe size distortions in letting the empirical size higher than the 
nominal level, at times raising the test’s nominal level of 5 to 50 per cent, and leading to the 
frequent rejection of the true null hypothesis – see Banerjee et al. (2005), Gengenback et al. 
(2005), Strauss and Yigit (2003) and O’Connel (1998). In the econometrics literature, there are 
two approaches that are available to handle the cross-sectional problem in the context of 
panel unit root tests. These are, in the literature, referred to as the second-generation panel 
unit root tests. The first approach is to impose almost no restrictions on the covariance 
matrix of the residuals – see O’Connel (1998), Maddala and Wu (1999) and Chang (2002, 
2004). The second approach, prior to an efficient designing of panel unit root tests, is to 
model and estimate the CD using a low dimensional common factor model. This latter 
approach is led by Pesaran (2004, 2007), Bai and Ng (2002, 2004), Moon and Perron (2004) 
and Phillips and Sul (2003). 
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This paper conducts the cross-section dependence test of Pesaran (CD) that can be 
employed to detect if there is any cross-sectional correlation and hence an indication of the 
degree of CD in the health-care inflation series among the members of the panel of US urban 
areas. If this phenomenon is confirmed statistically, we will handle the CD among US urban 
areas’ health-care inflation rate series by applying the Moon and Perron (2004) panel unit 
root test and the Pesaran’s (2007) cross-sectional augmented Im Pesaran and Shin (CIPS) 
test, derived from the cross-sectionally augmented Dickey–Fuller (CADF) test. To allow for 
residual serial correlation, the CADF test can be modified to incorporate the cross-section 
average of lagged levels and first differences of the individual panel member series to obtain 
the cross-sectionally augmented Dickey–Fuller test statistic (CADF) for each cross-sectional 
member of the panel. Pesaran constructs a modified version of the IPS t-bar test called CIPS 
test, based on the average of the observed individual cross-section CADF statistics. In 
Pesaran’s (2007, p. 283) notations, the CIPS statistic can be derived as follows: 

Dyit ¼ ai þ b iyi;t� 1 þ g iyt� 1 þ
XU

j¼0

d ijDyt� j þ
XU

j¼1

u ijDyi;t� j þ eit (4)   

CIPS ¼
1
N

� �
XN

i¼1

CADFi (5)  

where it is defined that yt� 1 ¼
1
N

� �XN

i� 1

yi;t� 1; and Dyt ¼
1
N

� �XN

i¼1

Dyit . In equation (4), the 

critical values of t (N, T ) are used for unit root testing in assessing the statistical 
significance of the actual t-statistic of the estimate of b i. The CIPS test takes into account 
both CD and residual serial correlation. Pesaran (2007) reports the critical values, based on 
N, T, for various deterministic terms used in equation (4). Moreover, Pesaran (2007) 
demonstrates that in the presence of a low degree of cross-section dependence, the power 
and size distortions the CIPS (N,T ), and its truncated version, the CIPS* panel unit root test 
perform very well even in small samples. 

While Pesaran’s (2007) CIPS panel unit root test considers one common factor in the error 
structure of the specified data-generating model, Moon and Perron (2004) consider multiple 
common factors to test the null of non-stationarity. Unlike the Pesaran’s CIPS test, the Moon 
and Perron (2004) test is often employed to detect the presence of a unit root in the panel 
when CD arises because of multiple common factors. Moon and Perron (2004) have 
developed two modified test t-statistics, t � a and t � b, based on the pooled estimation of 
the first-order serial correlation coefficient of the data series – see for details, Moon and 
Perron (2004). They show that both the test statistics are distributed as N (0, 1) under the 
null, and these statistics diverge under the stationary alternative hypothesis. 

As indicated above, the outcome of both the univariate and panel unit root tests are 
subject to severe bias when structural breaks in the series are neglected – see Perron (1989) 
and Levin and Piger (2004). Often, ignoring structural break in the time-series might result 
in false evidence of a unit root. Therefore, this paper conducts the panel LM unit root test 
with heterogeneous structural breaks proposed recently by Im et al. (2005) to statistically 
find out whether the urban area panel health inflation rate series are stationary with two 
structural breaks. This test, besides being a very powerful test that combines both panel 
data and structural breaks and free of nuisance parameter problems, jointly estimates the 
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heterogeneous optimal number and location of breaks for each cross-sectional member 
determined endogenously (also, see Lee and Strazicich, 2003). A distinguishing statistical 
feature of this test is that, unlike the Zivot and Andrews (1992) and the Lumsdaine and 
Papell (1997) univariate structural break tests, it allows for two structural breaks under both 
the null and alternative hypothesis. Im et al. (2005) compute the univariate LM unit root test 
statistic, given by the actual t-statistic, for each individual cross-section first and then 
compute the panel LM test statistic by standardizing the panel average LM statistic, LMN T . 
The statistic CLM is standardized by the mean and variance simulated by Im et al. (2005) is 
computed as follows: 

CLM ¼

ffiffiffiffi
N
p

LM NT � E LTð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
v LTð Þ

p (6)  

Im et al. (2005) derive the asymptotic properties of the panel CLM and demonstrate that it is 
normally distributed under the null as N (0, 1). The univariate two-break minimum LM unit 
root tests proposed by Lee and Strazicich (2003) endogenously determine the location of each 
break point and the optimal value of the lag length, k, is decided by using the general-to- 
specific method suggested by Perron and Ng (1996) and Perron (1989). For details of the 
procedure, see Im et al. (2005). 

To seek additional robust evidence to discern whether the panel of health-care inflation 
rates of the 17 US urban areas included in the study is individually and jointly as a panel 
stationary with multiple structural breaks, we conduct the most recent panel stationary test 
developed by Carrion-i-Silvestre et al. (2005) [hereafter, the CBL test]. In their epoch-making 
Econometrics Journal paper, Carrion-i-Silvestre et al. (2005) posit the following data- 
generating model and in describing their specification, we follow their notations to retain the 
letter and spirit of their proposition: 

yi;t ¼ ai þ
Xmi

k¼1

u i;kDUi;k;t þ b itþ
Xmi

k¼1

g i;kDT*
i;k;t þ « i;t (7)  

In model (7), DUi,k,t and DT*i k,t are dummy variables with DUi,k,t = 1 for t > T ib, k and 0 
elsewhere and DT*i k,t = t � T ib, k and 0 elsewhere. T ib, k is the kth date of structural break 
for the ith member of the panel with k = 1, . . ., mi, mi � 1. The model (7) can be used to allow 
structural breaks in both the mean and the time trend. The error terms associated with 
model (7) are assumed to be independent across cross-sections. As suggested by Silvestre 
et al., allowing a maximum of five breaks, the number and location of the structural breaks 
are estimated by using the sequential procedure proposed by Bai and Perron (1998). See for 
details of the model estimation, Carrion-i-Silvestre et al. (2005). Depending on the trending 
nature of regressors used in the model, the investigator can select one among the three 
criteria, the Bai and Perron (2001) criteria, the Bayesian Information Criterion and the 
modified Schwartz information Li, Wu and Zidek (LWZ) of Liu et al. (1997), to determine the 
optimal number of structural breaks for individual members of the panel. The CBL panel 
stationary test, besides having better power and size properties than other structural break 
tests, has many econometrically desirable features in allowing each panel member to have a 
different number of breaks located at different dates. 

As this test is a panel test based on Hadri’s univariate KPSS test, model (7) is 
estimated using the Ordinary Least Squares (OLS) method. The OLS residuals are used 
to derive the individual KPSS statistics for each cross-section and then compute the 
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average of these KPSS statistics, LM (l ), which in turn is transformed into the 
standardized test statistic, Z (l ). Here, l is a vector of relative positions of the break 
points. The standardized panel data statistic, Z (l ), which, under the null hypothesis of 
variance stationarity and assumption of cross-sectional independence, is normally 
distributed as N (0, 1) and it can be expressed as: 

Z lð Þ5

ffiffiffiffi
N
p

LM lð Þ � j
� �

z
(8)  

In (8), j -bar and § -bar are the average of the individual mean and variance of h I (l i). 

3. Empirical results and discussion 
The univariate unit root test results for the aggregate US health-care inflation rate are 
reported in Table II. While the results of the ADF tests, ADFGLS and Phillips–Perron tests, 
with the null hypothesis of the presence of a unit root, clearly indicate that the aggregate US 
health-care inflation rate series in levels are integrated of the order 1, I � (1), and therefore 
non-stationary, the series in their first differences are found to be integrated of order 0, I �
(0), and hence is stationary. The results of KPSS unit root test with the null of stationarity 
show that the series are non-stationary in levels and in first differences, indicating that the 
aggregate US health-care inflation rate is persistent. Any shocks to these series are 
permanent and hence they do not return to their mean. 

While it is tempting to conclude that the aggregate health inflation rate series is non- 
stationary, it is imperative that the series be tested for the presence of any structural breaks. 
As indicated before, Perron (1989) has demonstrated that ignoring the presence of structural 
breaks in a time-series and proceeding to conduct unit root testing would bias and statistical 
inference the results by mistaking the structural break for the presence of a unit root and – 
see for details, Perron (1989) and Zivot and Andrews (1992). In such an event, if the ADF 
unit root test is applied, the test lacks power and results in falsely accepting the presence of a 
unit root in the series. Therefore, this paper seeks to empirically determine whether the 
aggregate health-care inflation rate series has experienced any structural breaks in 
intercepts, trends or both by conducting the Zivot and Andrews (1992) endogenously 
estimated structural change unit root tests and the results are presented in Table III. 

From the results shown in Table III, it is clear that at the 1 per cent level, the null of unit 
root cannot be rejected for all specified models with different deterministic terms. Therefore, 
the conclusion that the aggregate health-care inflation rate is non-stationary is still 
reinforced. To detect robust statistical evidence of the presence of a unit root in a time-series, 
an investigation of the stochastic properties of health-care inflation rate series should be 
conducted using data at a much disaggregated level. 

Moreover, in recent years, the complementary approach of furnishing more information 
is encouraged by using panel data on the series to have effective statistical inference. 

Table II.  
Univariate unit root 
test results: 
aggregate US health- 
care inflation rate, 
1966-2006a  

Series ADF ADFGLS Phillips–Perron KPSS Decision  

Level   � 2.723 (0.233)   � 2.301 (0.026)   � 2.565 (0.298)   0.162* [0.146]   I (1) 
First differences   � 5.423*(0.000)   � 4.876* (0.000)   9.157* (0.000)   0.228* [0.146]   I (0)  

Notes: aWith a constant and a linear trend. Lags are based on the SIC criterion. p-values are in parentheses, 
and for the KPSS tests, 5% critical value in brackets; *Significant at the 5% level   

JEFAS 
23,44    

84  



Therefore, in this paper, several first-generation panel unit root tests are conducted and the 
results are reported in Table IV. Specifically, the Levin et al. (2002), Im et al. (2003), Maddala 
and Wu (1999) Fisher-type test, the Phillips and Perron (1988) Fisher-type test and, finally, 
the Hadri (2000) panel unit root tests are performed. For details on these tests, see Baltagi 
(2005), Breitung and Pesaran (2005), Hurlin (2007) and Murthy (2007). All these tests assume 
cross-section independence. While the LLC, MW, IPS and Phillips–Perron Fisher-type tests 
state the null hypothesis that all the individual series in the panel have a unit root, the IPS 
test specifically allows under its alternative hypothesis that some of the individual series in 
the panel to contain a unit root. Of these panel unit root tests, the LLC test makes the most 
restrictive assumption of allowing the autoregressive coefficient under the alternative 
hypothesis to be the same across the cross-sections. The Hadri panel unit root, as in the case 
of univariate KPSS unit root test, besides requiring the autoregressive parameter to be 
common to all the panel members, maintains the null hypothesis that all individual series of 
the panel do not have a unit root with the alternative of non-stationarity of all individual 
series. The LLC test also assumes a process with a common unit root process unlike the IPS, 
MW and Phillips–Perron’s Fisher-type tests. The IPS and the MW tests are less restrictive in 
allowing the autoregressive parameter to vary freely among the members. The Breitung 
(2000) test corrects for the loss of power in the presence of individual specific trends in the 
IPS and LLC tests. 

The panel unit root tests in Table IV clearly show that the results of a majority of the 
tests, IPS, MW and the Phillips–Perron Fisher-type tests, reject the null of the presence of a 

Table IV.  
Results of first- 

generation panel unit 
root tests  

Test 
Test-statistic 

Levels First differences  

Null hypothesis: unit root 
Levin–Lin–Chu (LLC) test   � 8.210* (0.000)   � 22.949* (0.000) 
Breitung test (BT)   � 5.329* (0.000)   � 11.241* (0.000) 
Im–Pesaran–Shin (IPS) test   � 5.453* (0.000)   � 21.713* (0.000) 
ADF-Fisher x2 (MW) test   84.901* (0.000)   384.494* (0.000) 
Phillips–Perron–Fisher x2 (PPF)   74.314* (0.000)   2,148.260* (0.000) 

Null hypothesis: no unit root 
Common unit process 8.271* 21.041* 
Hadri test (HT) (0.000) (0.000)  

Notes: *Indicates statistical significance at the 1% level. For levels, deterministic terms included are 
individual effects and linear trends. Lags are based on the Schwartz information criteria (SIC) criterion. In 
Hadri’s test, Heteroscedasticity-consistent Z-statistics are reported   

Table III.  
Results of the 

Andrews–Zivot unit 
root tests for 

structural break: 
aggregate US health- 

care inflation rate, 
1966-2006  

Break Observed minimum t-statistic 1% critical value  

Breaks in intercept only   � 5.067   � 5.34 
Breaks in trend only   � 3.757   � 5.34 
Breaks in both intercept and trend   � 5.081   � 5.57   
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unit root for the panel and hence urban series are stationary in levels. This finding 
challenges the evidence provided by unit root tests at the aggregate level. On the other hand, 
the outcome of the Hadri’s tests rejects the null. The conflicting results between these two 
sets of tests could be attributed to the lack of power of the Hadri’s test and the assumption of 
cross-section dependence among the individual members in the panel. It has been 
statistically shown that not considering and controlling for CD among cross-sectional 
members would lead to severe size distortions of the tests and decreased efficiency of 
estimation – see, O’Connel (1998). CD is very common and pervasive in panel owing to the 
presence of spillover effects, co-movements, common shocks, financial and economic 
integration, herd behavior, technological change and interdependence of consumers’ 
preferences. All these sources of CD are often present in health-care markets at the urban 
area level. Therefore, a robust testing of stochastic properties of health-care inflation rate 
does warrant the application of panel unit root tests, which are designed to handle the 
phenomenon of CD. 

In Table V, test results are presented for Pesaran’s, CADF tests. The results of Pesaran’s 
CIPS tests and Moon and Perron tests, which are the second-generation panel unit root tests, 
are presented in Table VI. Also, the CD test’s findings are shown in Table VI. The CD test is 
a diagnostic test proposed by Pesaran (2004) applied to statistically confirm whether any 
degree of CD is present in the panel data. In this test, the observed test statistic, normally 
distributed under the null of independence of cross-sectional units, is derived as: 

CD ¼ TN N � 1ð Þ=2
� �� 1=2

r̂ (9)  

where, in equation (9), r̂ is the simple average of the pair-wise cross-section correlation 
coefficients. As shown in Table VI, the observed test statistic for the CD test exceeds the 5 
per cent critical value, and therefore, the null hypothesis of no cross-sectional correlation is 

Table V.  
Pesaran’s CADF unit 
root test results for 
the panel dataa  

Urban area 

CADFi CADFi 

Levels First differences 
k = 1 k = 2 k = 1 k = 2  

Atlanta – GA   � 2.332   � 2.898**   � 3.540*   � 3.187* 
Boston – Brockton   � 3.149**   � 2.441**   � 5.869*   � 5.233* 
Chicago –   � 5.427*   � 3.782*   � 6.190*   � 6.190* 
Cincinnati – Hamilton   � 3.404**   � 2.864**   � 5.728*   � 4.287* 
Dallas – Fort Worth   � 4.250*   � 3.367**   � 6.190*   � 5.416* 
Detroit – Ann Arbor   � 3.153**   � 3.018**   � 5.460*   � 4.283* 
Houston – Galveston   � 4.582*   � 4.544*   � 5.648*   � 4.646* 
Kansas City, MO – KS   � 4.301*   � 4.161*   � 4.490*   � 3.777* 
Los Angeles – Riverside   � 6.569*   � 3.688*   � 6.190*   � 5.258* 
Milwaukee – Racine   � 3.160**   � 2.543**   � 6.154*   � 4.771* 
New York – N. New Jersey   � 3.336**   � 2.549**   � 5.697*   � 4.282* 
Philadelphia – Wilmington   � 3.862*   � 4.102*   � 5.446*   � 5.233* 
Pittsburgh – Pennsylvania   � 3.515*   � 2.949*   � 5.971*   � 3.795* 
Portland – Salem   � 4.832*   � 3.724*   � 6.190*   � 6.190* 
St. Louis – MO   � 3.541*   � 3.236**   � 5.610*   � 6.142* 
San Francisco – Oakland   � 3.035**   � 2.441   � 6.138*   � 5.173* 
Seattle – Tacoma   � 3.126**   � 2.942**   � 5.040*   � 4.522*  

Notes: k = lags; * and **significant at the 5% and 10% levels, respectively; aWith a deterministic trend   
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rejected, and therefore, there is a strong statistical evidence of CD in the data sample. The 
outcome of the CD test is robust to the lag length ranging from 0 to 3. The observed values 
of the CADF and CIPS statistics exceed, in absolute values, the critical values at the 5 
per cent level confirming that the health-care inflation rate series at the urban level are 
stationary. The results of the Moon and Perron panel tests, as indicated by the observed 
values of the t*-a and t*-b statistics, reject strongly the null hypothesis of non-stationarity at 
the 1 per cent level. These results show further evidence that the panel unit root tests results 
should not be taken conclusively as the health-care inflation rate series in the USA because 
of the observed CD among the members of the panel consisting of 17 US urban areas. In the 
present case, as the CIPS and CIPS* values are identical, only CIPS information is reported 
in Table VI. 

Results of the panel LM unit root tests with structural breaks in both level and trend, 
Model C in Im et al. (2005), are reported in Table VII. It is clear from the results for all 

Table VII.  
Im et al.’s panel LM 

unit root test results 
with two structural 
breaks: Model C**  

Urban area Univariate LM unit root test statistics Lags Break points  

Atlanta – GA   � 6.338*   2   1976, 2001 
Boston – Brockton   � 7.032*   8   1993, 2000 
Chicago   � 7.693*   7   1982, 1999 
Cincinnati   � 6.144*   8   1979, 1999 
Dallas – Fort Worth   � 6.345*   2   1990, 1998 
Detroit – Ann Arbor   � 7.294*   8   1979, 1999 
Houston – Galveston   � 6.486*   1   1986, 1998 
Kansas City, MO – KS   � 6.069*   8   1982, 1990 
Los Angeles – Riverside   � 8.071*   8   1984, 1991 
Milwaukee – Racine   � 5.986*   5   1979, 1998 
New York – N. New Jersey   � 6.367*   1   1977, 1990 
Philadelphia – Wilmington   � 7.245*   8   1984, 1998 
Pittsburgh – Pennsylvania   � 6.121*   5   1976, 1994 
Portland – Salem   � 6.102*   6   1981, 2002 
St. Louis – MO   � 5.319*   6   1982, 1990 
San Francisco – Oakland   � 6.025*   8   1984, 1992 
Seattle – Tacoma   � 8.506*   7   1978, 1998 
Panel LM Statistic � 6.576*   7   

Notes: The 5% critical value for the LM unit root with two breaks is � 5.286. The 5% critical value for the 
panel unit root test with two breaks is � 1.645; *denotes significance at the 5% level; **procedure allows for 
structural breaks both in level and trend   

Table VI.  
Second-generation 

panel unit root tests 
and the CD test 

results    

Moon and Perron (2004) test**  
Health care price  
inflation rate Pesaran’s (2007) CIPS* t*

� a t*
� b CD test-statistic**  

A. Levels   � 3.250**   � 23.423*   � 7.951*   28.82* (k = 2) 
B. First differences   � 4.956*   114.505*   � 33.982*   25.38* (k = 2)  

Notes: *and **indicate statistical significance at the 1% level and 5% level, respectively. k = lags. The 
observed common factor is equal to 1   
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the urban area health-care inflation rates that the null hypothesis of the presence of a 
unit root with structural change is rejected at the 5 per cent level, indicating that these 
series are stationary and each urban area has experienced two breaks. Furthermore, the 
panel LM unit root tests allowing for structural breaks reject the null hypothesis at the 
5 per cent level. Thus, the results largely show health-care inflation rates as stationary 
with broken trends, and hence, they are mean reverting and any shocks they receive 
would have temporary effects. Results show that unlike the aggregate health-care 
inflation rate series, the urban area series do converge. The majority of the break points 
are found to be in the1970s and 1990s, which could be associated with the impact on 
health-care inflation rates owing to the global oil crisis, era of stagflation in the USA in 
the middle 1970s and the reduction of the inflation rate in the1990s brought by anti- 
inflationary monetary policy of Paul Volker in the USA and some of the institutional 
organizational and technological changes that took place in the area of health-care in 
the 1990s and early 2000s. 

While the results shown in Table VII provide some insights on the structural breaks 
experienced by various urban areas and the panel as a whole, the Im et al. panel unit root 
tests assume that there is no CD. Additionally, these tests state the null hypothesis as non- 
stationary, whereas the Carrion-i-Silvestre et al. (2005) maintains that the null is stationarity 
and usually, the null hypothesis will be rejected only when there is strong evidence against 
it. Therefore, for robustness of results, we proceed to apply the CBL panel stationary test in 
the following section. 

In Table VIII, the results of the Carrion-i-Silvestre et al. (2005) panel variance 
stationarity test allowing for endogenously determined multiple structural breaks 
(shifts in the mean owing to structural breaks) are presented. The model estimated 
includes the deterministic terms of constant and change in the level when there are 
breaks. The LWZ criterion is used for determining the optimal number of breaks. In this 
test, the null hypothesis is that the series are regime-wise stationary for all the panel 
members against the alternative of non-stationarity for some of the members. As 
asymptotic critical values are used in the KPSS tests, we have to control for the finite- 
sample bias as we have used a relatively small sample, we have computed finite-sample 
10 and 5 per cent critical values for the individual KPSS tests with multiple structural 
breaks by conducting Monte Carlo simulations of using 20,000 draws and the resulting 
information is reported in Table VIII. The observed individual KPSS statistics with the 
estimated multiple breakpoints, presented in Panel A, show that the null hypothesis of 
stationarity with multiple-level shifts cannot be rejected at the 5 per cent level for all the 
urban areas with the exceptions of New York and Northern New Jersey and San 
Francisco and Oakland urban areas. 

As earlier discussed in this paper, the presence of CD arising from both global and local 
spillovers, common shocks and other common factors would result in bias and size 
distortions. To detect presence of CD in the data used in this paper, the widely used 
Pesaran’s (2004) CD test results are presented in Table VI (see for details, Pesaran, 2004). As 
a solution to mitigate the impact of the CD, we have reported, in Table VIII, the bootstrapped 
critical values, allowing for the presence of CD. There is no formal procedure to test the 
presence of CD on the results of the CBL tests. 

It is clear that all of the urban areas experienced at least one structural break with 
positive shifts in their mean and most urban areas witnessed multiple breaks. This 
observed empirical finding in terms of varied number and position of structural 
breaks for different panel members might be indicative of a high degree of 
heterogeneity, which renders our results richer. Of the total 37 structural breaks 
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experienced by all of the urban areas, we find two clusters of breaks circa 1973 (when 
the USA spent $162.6bn on health care) and 1982, the former associated with the 
energy crisis and the latter associated with Paul Volker’s regime of restrictive 
monetary policy, that might have impacted health-care production and distribution. 
The 1973 cluster of breaks coincides with the Health Maintenance Organizations Act 
of 1973 following US President Nixon’s passage and implementation of the 1971 
Economic Stabilization Program (after price controls had been ineffective) to contain 
double-digit inflation in the economy. The 1982 cluster of breaks coincides with rapid 
changes in medical technology, slow health sector productivity growth and the new 
method for reimbursing hospitals took effect. The US Bureau of Labor Statistics 
(2014) also expanded the composition of the producer price index (PPI) Hospital Index 
in 1993 and the PPI Physician Index in 1994 and computed them monthly. This 
accounts for another cluster of breaks experienced by some of the major urban areas 
in the early 1990s. 

Table VIII.  
Carrion-i-Silvestre 

et al. Panel 
stationarity tests 

results  

Urban area Individual KPSS test mi Ti
b;1 Ti

b;2 Ti
b;3 

Finite sample 
KPSS critical 

values 
10% 5%  

Panel A: Individual panel member information 
Atlanta – Georgia   0.081   1   1994þ 0.195   0.252 
Boston – Brockton   0.044   2   1974þ 1992þ 0.108   0.129 
Chicago   0.043   3   1973þ 1983þ 1993þ 0.073   0.084 
Cincinnati – Hamilton   0.076   1   1994þ 0.197   0.253 
Dallas – Ft. Worth   0.114   1   1992þ 0.181   0.230 
Detroit – Ann Arbor   0.098   1   1992þ 0.175   0.222 
Houston – Galveston   0.043   3   1974þ 1983þ 1992þ 0.075   0.087 
Kansas City – Missouri   0.060   3   1983þ 1993þ 1999þ 0.073   0.084 
Los Angeles – Riverside   0.069   3   1973þ 1982þ 1993þ 0.073   0.085 
Milwaukee – Racine   0.057   3   1973þ 1981þ 1995þ 0.076   0.089 
New York – N. New Jersey   0.127*   2   1973þ 1992þ 0.114   0.136 
Philadelphia – Wilmington   0.091   1   1993þ 0.185   0.235 
Pittsburgh – Pennsylvania   0.064   3   1972þ 1982þ 1992þ 0.076   0.090 
Portland – Salem   0.134   2   1973þ 1982þ 0.143   0.183 
St. Louis – Missouri   0.129   2   1973þ 1983þ 0.133   0.170 
San Francisco – Oakland   0.121**   3   1973þ 1982þ 1993þ 0.074   0.086 
Seattle – Tacoma   0.058   3   1973þ 1982þ 1992þ 0.075   0.088  

Panel B: Panel test statistics 
Z l̂ð Þ Homogeneous variance   2.093 (0.018) 
Z l̂ð Þ Heterogeneous variance   1.716 (0.043)  

Panel C: Bootstrap distribution (allowing for cross-section dependence) 
Critical values 90% 95% 97.5% 99% 
Homogeneous   0.318   0.650   0.949   1.301 
Heterogeneous   0.220   0.500   0.753   1.050  

Notes: * and **see, Kwiatkowski et al. (1992) significant at the 10% and 5% levels, respectively; The sign 
þdenotes an upward shift in the mean. p-values reported within parentheses.   
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Further in Table VIII, the observed panel test statistics, shown in Panel B, assuming CD 
along with the assumptions of homogeneous and heterogeneous variances used in 
computing the long run variance of the test statistic, rejects the null hypothesis at the 5 
per cent level and leads to the conclusion that the series is non-stationary. Finally, 
controlling for general forms of CD and finite sample bias, the 1, 2.5, 5 and 10 per cent 
bootstrapped critical values of the panel statistic are generated, and reported in Table VIII, 
using 20,000 replications following the procedure recommended by Maddala and Wu (1999). 
The resulting critical values, using both the homogeneous and heterogeneous assumptions, 
are shown in Panel C of Table VIII. As it can be readily observed that owing to the size 
distribution caused by the presence of CD among the panel members, the bootstrapped 
standard normal distribution shifts to the right. Now, the computed long-run variance is 
greater than the bootstrapped 10, 5 or 1 per cent critical values, indicating that the null 
hypothesis is again rejected. Thus, from the CBL test results, we again have some robust 
empirical evidence that the urban area health-care inflation rates are non-stationary with 
individual panel members experiencing multiple structural breaks. Therefore, we find these 
series are not mean-reverting. 

4. Conclusion 
This paper, for the first time in the literature, using a battery of univariate, panel unit root 
tests, the Im et al.’s LM panel unit tests that permit two structural breaks and the recently 
developed Carrion-i-Silvestre et al. panel stationarity tests that allow for multiple 
structural break points, empirically confirms the existence of a unit root in the US health- 
care inflation rate series during the period 1966-2006. While the null of unit root cannot be 
rejected for the aggregate series, for the disaggregated series, they are rejected under the 
assumption that the panel members are independent. Stationarity of the disaggregated 
series implies that it is mean reverting. This suggests that related macroeconomic shocks 
(such as changes in fiscal or monetary policies) or health policy changes (e.g. 
reimbursement and financing of covered procedures) have transitory effects on health- 
care inflation rates. 

Maximum number of breaks, mi, allowed is health-care sector prices are usually driven 
by quality improvements, and as a result the prices should be quality adjusted. Cutler et al. 
(1998) argue that increases in health-care prices could arise from quality improvements, 
meaning that the price per quality may remain more stable. This implies that while quality- 
adjusted prices could be stationary, quality itself could be non-stationary to also make the 
unadjusted price series non-stationary. However, health-care quality is multi-dimensional 
and adjusting for quality in a time-series and panel data context is challenging. This is an 
acknowledged limitation of our current study[4]. 

The presence of CD renders panel unit root tests severely size-distorted and hence generates 
spurious statistical inference. Therefore, to control for the presence of CD, in the presence of 
multiple structural breaks for individual panel members, the bootstrapped critical values are 
generated to test the unit root hypothesis panel test statistics applying the Carrion-i-Silvestre 
et al. panel stationarity test. The results show that the time-series of the US health-care inflation 
rates exhibit unit root behavior. Finally, our study findings have implications for health-care 
insurance premium rate setting, health-care inflation econometric modeling and forecasting. 
The results confirming the presence of a unit root indicating a high degree of inflationary 
persistence in the health sector signal the need for further studies on health-care inflation rate 
persistence using alternative measures of persistence. 
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Notes  

1. Current calls for transparencies in health care prices, premiums and costs as the ACA unfolds are 
yielding some results. Joszt (2014), for example, presented data based on analysis from Castlight 
Health to rank urban areas based on their health care costs for primary care visits, MRIs and CT 
scans. The top ten cities (average price per visit, median income) are: San Diego, CA ($145, 
$63,990); Atlanta, GA ($147, $46,146); Chicago, IL ($165, $47,408); Seattle, WA ($189, $63,470); 
Boston, MA ($193, $53,136); Charlotte, NC ($199; $52,196); Minneapolis, MN ($209, $48,881); 
Portland, OR ($216, $51,238); Sacramento, CA ($219, $50,661); and San Francisco ($251, $73,802).  

2. High-price areas in 2014 are: Boulder, CO; El Paso, TX; Dallas, TX; Milwaukee, WI; Philadelphia, 
PA; Denver, CO; and Fort Collins, Co. In comparison, low-price areas include: Tucson, AR; St. 
Louis, MO; New Orleans, LA; Peoria, IL; and Louisville, KY.  

3. As cautioned by one referee, discussions on the impact of technological change on health-care 
spending need to acknowledge that technological change may imply treatment expansions 
affecting quantities and not prices and that prices could be affected when new technology 
displaces current treatment methods.  

4. We thank a referee for pointing out this as a study limitation. 
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Appendix 
The urban areas included are: Atlanta, GA; Boston – Brockton – Nashua, MA, NH, ME, CT; 
Chicago – Gary – Kenosha, IL, IN, WI; Cincinnati – Hamilton, OH, KY, IN; Dallas – Fort Worth, 
TX; Detroit – Ann Arbor – Flint, MI; Houston – Galveston – Brazoria, TX; Kansas City, MO, KS; 
Los Angeles – Riverside – Orange County, CA; Milwaukee – Racine, WI; New York – Northern 
New Jersey – Long Island, NY, NJ, CT, PA; Philadelphia – Wilmington – Atlantic City, 
Philadelphia, NJ, DE, MD, Pittsburgh, PA; Portland – Salem, OR, WA; St. Louis, MO, IL; San 
Francisco – Oakland – San Jose, CA; Seattle – Tacoma – Bremerton, WA.  
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