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Based on the work of Brandt et  al. (2009), we formulate an index  tracking  and  enhanced indexation model

using  a  parametric approach.  The portfolio weights  are  modeled as  functions of  assets characteristics

and  similarity measures  of the  assets  with  the  index to  track.  This  approach permits handling  non-

linear  and nonconvex objectives functions that  are  difficult  to incorporate  in  existing index  tracking  and

enhanced indexation models.  Additionally,  this  approach gives  the  investor  more information  about  the

portfolio holdings since  the optimization is  performed  over portfolio  strategies. Finally, an empirical

implementation  and an analysis of  selected characteristics are presented  for  the S&P500 index.
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Basándonos  en el trabajo de  Brandt  et  al. (2009),  formulamos  un  modelo de seguimiento  de índices e

indexación  mejorada  utilizando  un enfoque  paramétrico. Los pesos de  cartera se modelan  como funciones

de  características  de activos  y  medidas  de  similitud  de los activos con el índice  objeto  de seguimiento.

Este  enfoque permite tratar funciones  de  objetivos  no lineales y no  convexos,  difíciles  de incorporar  en

modelos de  indexación mejorada y  seguimiento  de  índices existentes. Además, proporciona al inversor

más  información sobre los valores en  cartera  porque  la optimización  se lleva a  cabo  en  torno a  estrate-

gias de portafolio.  Por último, se presenta una  implementación  empírica  y un análisis  de características

seleccionadas del índice  S&P500.

©  2013  Universidad  ESAN. Publicado  por  Elsevier  España,  S.L.  Todos  los derechos  reservados.

1. Introduction

Index tracking is a type of  passive  management strategy which

consists of designing a portfolio (tracking portfolio or  index  fund)

to replicate the behavior of  a broad market index. The popularity of

index funds, as  mentioned in  Cornuejols and Tütüncü (2007), relies

on both theoretical (market efficiency) and empirical (performance

and costs) reasons. If  the market is  efficient, it  is not possible to

obtain superior risk-adjusted returns by active management
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portfolio strategies. Because the market portfolio captures the

efficiency of  the market through diversification, it  is a  theoretically

reasonable strategy to invest in  an index fund. Moreover, many

empirical studies show  that, on average, active  portfolio managers

do  not outperform the major indices. Also, active management gen-

erally incurs costly research activities and compensation to  the fund

managers. These costs can be  avoided by an index tracking strategy.

Index tracking also has  two sub-strategies: full replication and

partial replication. In a  full replication strategy, all  the names in

the index are bought (and held)  in  the exact proportions as they

appear in  the index. On  the other hand,  the partial replication strat-

egy holds fewer assets than the total  number of assets in  the index;

however, the assets to include  and their  weights need  to  be  deter-

mined. For example, Cornuejols and Tütüncü (2007) and Canakgoz
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and Beasley (2008), for  example, mention that the main disadvan-

tages of  the full replication strategy are  the high transaction costs

to  rebalance all the positions in  the index, the difficulty to  hold

very small  proportions of some stocks, and the illiquidity of  certain

stocks (especially in  small-cap indices). For Rudd (1980), the main

advantage of partial replication is the decrease in  administrative

overhead and administration costs (custodial and accounting).

Enhanced indexation or enhanced index tracking, in  the words

of Canakgoz and Beasley (2008) “aims  to  reproduce the perfor-

mance of a  stock market index, but to  generate excess return (return

over and above the return achieved by the index)”. Usually, the

objective in the enhanced indexation problem is  to  maximize alpha

while the beta of the portfolio remains close to  one,  or to maxi-

mize excess return (over the index) by keeping the tracking error

bounded to some quantity. The main distinction with the track-

ing problem is  that  enhanced indexation can be seen as an active

strategy to beat a  benchmark under the same risk.

Different from the index tracking approach, enhanced index-

ation (using fewer assets than the  index) lacks the theoretical

foundation of the market  efficiency, since holding fewer assets can-

not ensure full diversification of the portfolio. Additionally, many of

the approaches use  only information contained in  the return (price)

series. Without additional information or  differences in  expected

returns forecasts, it is  hard  to  identify the “mispriced” securities to

include in the portfolio. With lower diversification than the index,

it is  logical to expect the generation of  positive excess returns over

the index as a trade-off with the portfolio’s beta,  the overall risk,

or the correlation coefficient with the  index. Therefore, it is crucial

to  analyze carefully the in-sample and out-of-sample performance

of the enhanced tracking portfolios to  analyze  the corresponding

risk-return trade-off and the consistency of  the tracking strategy.

In this  paper, we  propose a parametric approach for index

tracking and enhanced indexation based on the work of Brandt,

Santa-Clara, and Valkanov (2009).  We  formulate a multi-objective

non-linear optimization problem with a small number of decision

variables. Our objective function decomposes (approximately) the

variance of the tracking error  or  the portfolio beta into the cor-

relation coefficient of the  portfolio and the index and the ratio of

their standard deviations. Notice that when the correlation coeffi-

cient is close to one and the standard deviations are close to each

other, the variance of the tracking error goes  to zero and the beta

of the portfolio goes to  one.  Consequently, this specification of the

tracking component is  more flexible than  the ones  existing  in the

literature. For the enhanced component, although other objectives

can be  proposed, we usually maximize the average excess returns

over the index.

As  in the portfolio  optimization approach of Brandt et  al. (2009),

we use  information inside and outside the return series  to  build

our portfolios. However, due to  the time horizon (daily or  weekly)

of typical index tracking problems, we  exclude some of the factors

used in Brandt et al. (2009) which explain the  cross-section of assets

returns. For  example, we omit the book-to-market ratio because

daily book values are not observable. We consider it  of  interest to

include information on the  similarity of the stock’s returns  with the

index returns, under the premise that  it  is  reasonable that stocks

behaving similarly to  the index have potential to form  a part of  the

tracking portfolio. Also, we  include some measures of  “momentum”

of the stocks to  beat  the index assuming  that the “momentum” will

continue in the near future.

In the parametric approach, the portfolio weights are functions

of selected characteristics of the stocks. We want  to  determine

how to assign importance to  these  characteristics depending on  the

particular trade-off defined in the  objective function. By  assigning

importance levels, it is straightforward to find portfolio strategies

and not just portfolio weights. We can  then  analyze how these

strategies change according to the importance given to the tracking

or  enhanced components of the objective. These features give the

investor more  information about the portfolio holdings than typ-

ical approaches in  the literature. Also, the  parametric approach is

flexible enough to handle cardinality constraints, transactions cost

(in various ways), and lower and upper bounds  on the portfolio

weights.

We  implement the parametric approach to  build a tracking or

enhanced tracking portfolio1 for  the S&P500 index, using as char-

acteristics market capitalization, alpha and beta  of  the  individual

stocks. The empirical results show that holding  stocks with high

market capitalization results in  tracking portfolios with high cor-

relation coefficient with the index. Stocks with  beta close to one

are  useful to  keep the ratio of  standard deviations close to  one,

while including stocks with high alpha is used  to increase the excess

returns  over the index. The  in-sample performance was similar

to other models  in  the literature, and the  out-of-sample perfor-

mance was very robust, especially for the tracking component of the

objective. Additionally, the  level of  turnover was  acceptable, and,

from examining the maximum and minimum portfolio weights, the

tracking portfolios were well-diversified.

The organization of  the paper is as follows, Section 2 presents

a  brief literature review. In  Section 3,  we describe the  typical

enhanced tracking model. In  Section 4, we develop in  detail  the

parametric approach. In Section 5, we add some refinements

to  the “plain” parametric model including transaction costs  and

lower/upper bounds on the portfolio weights. Section 6  describes

some  characteristics that  can be  used  in  the parametric approach.

In  Section 7, we  present the empirical application for the S&P500

index. We conclude in  Section 8.

2.  Literature review

Since the late  1970s the problem of index tracking has

drawn  attention from  the financial and operations research lit-

erature. Now we  have many different approaches, in particular

to design index  tracking funds using partial replication. Next,

we  mention some of the most common approaches for index

tracking. The  following is by no  means  a complete literature

survey of  index tracking. For  further information, the reader

can look at the references mentioned in  each of the cited

documents.

Commonly, the index tracking problem with  partial replication

is  formulated as a  mixed-integer programming model, which is

challenging to solve to  optimality using “traditional” integer pro-

gramming and optimization techniques. This  structure leaves room

for the  use of  a variety of  heuristics, metaheuristics and other solu-

tion approaches. It is  typical in this  approach to  minimize some

function that measures the  distance between the index returns (or

normalized prices) and those of the tracking portfolio in a  specific

calibration period. Another common objective in  these  formula-

tions is to try to  construct a  tracking portfolio with beta (relative  to

the  benchmark) close to  one.  Those models contain the  assumption

that the returns (or prices) will have  the same statistical behav-

ior in  the next period(s). Complete formulations in  this framework

include transactions costs, rebalancing policies and other features

and constraints. In this line, we  refer to Beasley, Meade, and Chang

(2003),  Gaivoronski, Krylov, and van der Wijst (2005),  Canakgoz

and Beasley  (2008), and the references therein.

Markowitz-type formulations are commonly used in index

tracking where  the tracking error variance (variance of the port-

folio that  is  long in  the tracking portfolio and short in  the index)

1 During our discussion, we  frequently use the term tracking portfolio to refer,

in  general, to the  solutions of  the  optimization problems that will be described in

Section  3.
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is  minimized under other appropriate constraints. For this for-

mulation, it is necessary to  estimate the covariance matrix of all

assets in the index, for which available data may  not  be  suffi-

cient. Instead, the returns-based style analysis  of  Sharpe (1988,

1992),  based on  the minimization of the  tracking error relative

to a weighted combination of indices, can be  used. For exam-

ple, related to this kind of  formulation, Derigs and Nickel (2003)

estimated the covariance matrix and the expected returns using

a linear factor model based on macro-economic variables. They

solve  the tracking problem using a simulated annealing based on

metaheuristic. While such factor models are tractable, the general

problem with tracking error variance  minimization is  the difficulty

in estimating a  covariance matrix for  the returns of all assets in  the

index.

Another type of model considers the inclusion of other variables

(most commonly economic ones) in addition to the returns (or price

series). For example, in Oh, Kim, and Min  (2005), the stocks form-

ing  the index fund are computed in  two steps. In the first  step,

stocks  are ranked by a priority function that includes “fundamen-

tal” variables (standard error  of  the asset’s beta,  average trading

amount and average  market capitalization). Initial  weights of the

index tracking portfolio are  then  selected using  a heuristic proce-

dure. In  the second step, a genetic algorithm is used to  optimize the

relative weights of  the selected stocks, with the constraint that

the portfolio beta  should be close to one.

Corielli and Marcellino (2006) introduced the idea of reprodu-

cing a  linear factor model  structure for index tracking. They assume

that stock prices evolve  according to  a  linear factor model, and

form an objective to build a tracking portfolio with the  same factor

structure as the index.  However, to  implement the procedure, the

factor loading matrix needs to be  estimated in order to find  the opti-

mal  portfolio weights. Additionally, the cardinality of the  tracking

portfolio is  satisfied by a  heuristic procedure which works  by order-

ing the factors according to  their correlation with  the index, and

then includes those stocks  that  replicate the factors with a decided

accuracy.

Clustering techniques are  also used to  construct tracking port-

folios. For  example, Focardi  and Fabozzi (2004) describe  an index-

tracking methodology based on time-series clustering. They argue

that because the  estimation of all the covariances between assets

of  a  broad market index (needed for a next period optimization)

is computationally burdensome and produces noisy results, a hier-

archical  clustering of the asset’s time series is  a more robust way

to reveal the correlation structure. In  their application, they used

the  Euclidean distance between stock  prices as the basis  of  their

clustering. In  a similar direction, Cornuejols and Tütüncü  (2007)

present an index-tracking problem based on clustering stocks

with similar correlation coefficients of returns. To find the

stocks in the tracking portfolio, they solved  a large scale  integer

programming model, for  which, Lagrangian relaxation and subgra-

dient methods can produce good upper bounds. After selecting the

stocks, the weights are  determined proportionally to their  market

capitalization.

Other interesting techniques for  index  tracking are the cointe-

gration approach of Alexander (1999) and Alexander and Dimitriu

(2005) and the stochastic programming approach of Stoyan and

Kwon (2007).  As an additional example in  continuous time, Yao,

Zhang, and Zhou (2006) formulate the  index tracking problem as a

stochastic optimal control problem and solved it using semidefinite

programming.

In the case of enhanced indexation, since the  cardinality con-

straint (to  hold fewer  assets than  the index) is  usually imposed,

almost all of the approaches and techniques for  partial replication

can be  used  after some modifications. The reader interested in the

enhanced indexation literature can consult Section 2.2 of  Canakgoz

and Beasley  (2008).

3. The enhanced indexation problem

Suppose from time  t  to  t +  1  the index has a  return w  �t +  1, and

at time t, Nt stocks2 form the index. Each stock  i has a return ri,t + 1

from  date  t to t  +  1 and an associated vector of firm characteristics

yi,t observed at date  t. These characteristics can be related to the

explanation of returns, e.g., the market  capitalization of the stock,

the book-to-market ratio, lagged returns, etc., and to similarity

measures with the index, e.g., correlation, mean-absolute devia-

tion with  respect to the index, maximum deviation with respect to

the index, etc.

Originally, the investor, who tries to  track an index or  to  form an

enhanced index tracking portfolio3 at  time  t, wants to solve the fol-

lowing problem (P) by selecting the appropriate portfolio weights

xi,t for i =  1,. . .,  Nt:

Maximize :  �1�t(vt+1, pt+1) −  �2
�t(pt+1)

�t(vt+1)
+  �3Ot(vt,  pt+1)

subject to  pt+1 =

Nt
∑

i=1

ri,t+1xi,t,

Nt
∑

i=1

xi,t = 1,

〈supp(xt)〉 ≤ Kt, li,t ≤  xi,t ≤  ui,t, for all i,

where pt + 1 is the return of the tracking portfolio and �t(vt+1,pt+1)

is the correlation coefficient (conditional to the information up to

time t) of  the  returns  of  the index and the tracking portfolio, more

specifically:

�t(vt+1, pt+1) =
Covt(vt+1, pt+1)

�t(pt+1)�t(vt+1)

=
Et[(vt+1 −  Et [vt+1])(pt+1 − Et [pt+1])]

√

Et[(vt+1 − Et [vt+1])
2]

√

Et[(pt+1 −  Et[pt+1])2]
(1)

Additionally, Ot is  a measure of out-performance of the tracking

portfolio with respect to  the index. Some common  choices of  Ot are

given by

Ot(vt+1,  pt+1) =  Et[1{pt+1≥vt+1}] (2)

or

Ot(vt+1, pt+1) =  E�t[pt+1 −  vt+1]. (3)

In the objective function, we  have that  �1 ≥ 0 measures the

weight given to  the correlation coefficient between the tracking

portfolio and the index. In  the same way,  �2 ≥ 0 is the weight given

to  the “risk” component, i.e., the  part of the objective function used

to avoid constructing tracking portfolios with higher standard devi-

ation than the index. Since the tracking portfolio is less  diversified

than the index, the  standard deviation of  the tracking portfolio

tends to  be higher than the one of  the index. This objective

then tends to match both  standard deviations, i.e., to make the ratio

close to one. For the enhanced component (with �3 ≥  0), expression

2 In a  more general case an  index can  be  tracked not only taking positions in its

components, but also using other stocks outside the  index and other assets  such

commodities. However, the  last case  will generate complications in  the definition

of  the relevant characteristics.
3 From  now  on, we  will use the  generic name  “tracking portfolio” to  identify the

investor’s portfolio.



22 L.  Chavez-Bedoya, J.R.  Birge  /  Journal  of Economics, Finance and  Administrative Science 19 (2014) 19–44

(2) represents the probability (also conditional  to the information

up to  time t)  that  the tracking portfolio has a greater return than

the index. In  a similar way,  (3)  represents the excess return of  the

tracking portfolio with  respect to  the index.

Summarizing the objective of  problem (P), we  are maximizing

a multi-objective function using linear scalarization, in  which the

tracking component is  given by  the correlation coefficient minus

the ratio of  the standard deviations of  the returns of the tracking

portfolio and the index, while the enhanced component is mea-

sured by  either the excess return of the tracking portfolio  with

respect to  the index or the probability of beating the returns of

the index. Additionally, by setting the parameters �1,�2 and �3,

we determine the implicit  trade-offs between the different compo-

nents of the objective. For example, �1 > 0,  �2 > 0 and small  values

of �3 correspond mostly to  a tracking-only strategy. Next, we  will

discuss how our objective is related to  common objectives in  the

literature, as  well as,  the advantages of  using both the correla-

tion coefficient and the ratio of standard deviations to  measure the

tracking performance.

The objective function of the returns-based style  analysis (RBSA)

of Sharpe (1988, 1992) is  to  minimize the conditional  variance of

the tracking error given  by  �2
t (vt+1 −  pt+1).  We  can  expand the

tracking error to  have

�2
t (vt+1 −  pt+1)  = �2

t (vt+1) +  �2(pt+1)

−  2�t(vt+1,  pt+1)�t(vt+1)�t(pt+1). (4)

If  (�t(pt+1)/�t(pt+1))  ≈  1  and �t(vt+1,  pt+1) ≈  1, then the vari-

ance of the tracking error  will  be  close to zero. Therefore, the

enhanced component of our objective function correctly  measures

the ability of the enhanced index fund manager to  contribute to

the portfolio performance (in a sense that  the  performance is  sep-

arated from  the tracking error). Additionally, the separation of  the

conditional correlation coefficient and the conditional standard

deviations ratio gives more freedom to  the design of the tracking

portfolio.

In  the enhanced index tracking literature, two common mini-

mization objectives4 (with �∗
1
, �∗

1
≥0) are given by:

�∗
1Et[(vt+1 − pt+1)2]  −  �∗

2Et[pt+1 − vt+1], (5)

�∗
1|  ̌ − 1| −  �∗

2˛, (6)

where in (5), we have that  ̌ and  ̨ come from the following linear

regression model: pt+1 =   ̨ + ˇvt+1 + εt+1.

Notice that in  (4),  which is a  similar objective to  the one

used in Beasley et  al.  (2003), one  can show that  minimizing

Et[(vt+1 −  pt+1)2] is  equivalent to  minimizing �2
t (vt+1 − pt+1) +

(Et[vt+1] −  Et[pt+1])2.  Therefore, we are  indirectly trying to  match

the first moments of vt +  1 and pt  +  1. This fact will directly affect the

weight given to  the enhanced component.

Objective (5), which is  used in Canakgoz and Beasley  (2008),

clearly separates the  tracking component from the enhanced com-

ponent; but, even in  the case of ˇ  =  1, we  could  have  that  �(pt+1)  >
�(vt+1).  We could find ˛-positive strategies (with  ̌ close to  1) but

most likely with higher overall risk. Since,

 ̌ =
Covt(vt+1,pt+1)

�2
t (vt+1)

= �t(vt+1,  pt+1)
�t(pt+1)

�t(vt+1)
,  (7)

If  we have that  (�t(pt+1)/�t(pt+1))  ≈ 1 and �t(vt+1, pt+1)  ≈ 1,

then  ̌ will be close  to  one.  Therefore, our objective function (in

4 We will formulate the objectives in terms  of  conditional expectations; however,

under independence and stationary assumptions, we can  think of them as uncondi-

tional expectations and  after  that as sample counterparts over a calibration period.

More detail will be  given later in this section.

the tracking component) indirectly minimizes the variance of the

portfolio and tries to  achieve values of ˇ  close to one.

In the constraints of  (P), we have that  supp (xt)  =  {i :  xi,t >  0},
< . > represents the  cardinality of a set,  and Kt is a positive integer

(smaller than Nt)  representing the maximum number of stocks  with

positive weight  in  the tracking portfolio at time t. The  last constraint

of the formulation imposes some lower or  upper bound constraints

on the tracking portfolio.

Under the assumptions that  the index return for each t is  an

i.i.d. random variable, the vector of returns of the stocks for each

t is  a  multivariate i.i.d.  random vector (the index  returns  and the

stock  returns are  not independent). Considering Nt =  N,  Kt =  K and

ui,t =  ui, we  can reformulate problem (P) using its sample counter-

part that  avoids  the time  dependence of the portfolio weights, i.e.,

ensures xi,t =  xi for all t. We can then find the optimal portfolio

weights x  by solving the following problem (PI)  with a  calibration

period [1,T]

Maximize �1�t(v, p)  −  �2
�T (p)

�T (v)
+  �3OT (v, p)

subject to pt+1 =

N
∑

i=1

ri,t+1xi,  for each t  = 0, .  . .,  T −  1

N
∑

i=1

xi = 1,

li ≤  xi ≤ ui,  for all  i

where

�T (v,  p) =
CovT (v, p)

�T (v)�T (p)
=

∑t=0

T−1
(vt+1 −  v̄)(pt+1 − p̄)

√

∑T−1

t=0
(vt+1 − v̄)2

√

∑T−1

t=0
(pt+1 − p̄)2

,

(8)

OT (v.p) =
1

T

T−1
∑

t=0

1{pt+1−vt+1>0}, (9)

or

OT (v.p) =
1

T

T−1
∑

t=0

(pt+1 − vt+1) (10)

where v̄ =
∑T−1

t=0
vt+1/T and p̄ =

∑T−1

t=0
pt+1/T . Problem (PI) can  be

viewed as a non-linear and non-concave mixed integer program-

ming model  which is very difficult to solve even  for small values  of

N and K. For a similar version of  the problem, but, with a quadratic

objective, the reader can consult Bienstock  (1996).

4.  Parametric approach for  enhanced indexation

Instead of  solving (PI)  using mixed integer programming tech-

niques, we use the parametric approach in Brandt et al.  (2009) to

formulate an alternative (but not equivalent) problem where the

portfolio weights are  specified as a  function of the  stocks charac-

teristics by

xi,t = f (yi,t,�). (11)

The  function f  should take into account the last three constraints

of  the original formulation (P)  to produce feasible portfolio allo-

cations for  the  enhanced index model. If  we consider li,t = 0  and

ui,t =  1 for all i,  a possible function  f (with no closed form) can be

obtained using the following steps:
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Step 1 Let x∗
i,t

= x̄i,t +  (1/A)�T ŷi,t ,  where x̄i,t is  some initial port-

folio (for  example, if x̄i,t =  (1/Nt) our “initial” portfolio is  the

equally-weighted portfolio), ŷi,t are the characteristics of stock  i,

standardized cross-sectionally to have zero  mean and a standard

deviation of one across all stocks at  date t  and 1/A is a normaliza-

tion factor used  to  avoid aggressive allocations and achieve more

robustness in the results.  Following Brandt et  al. (2009),  we set

A = Kt.

Step 2 Let x∗∗
i,t

=

(

max[0,  x∗
i,t

]/
∑j=1

j=1
max[0,  x∗

j,t
]

)

,  notice that
∑Nt

t=1
x∗∗

i,t
=  1 and x∗∗

i,t
≥0 for all i  =  1, ..., Nt .

Step 3 Consider the assets with the largest Kt weights of  x∗∗
t , and

set the weight of the other assets to  zero. Break ties  arbitrarily. Let

these re-defined weights be  x+

it
.

Step 4 Finally,  let xi,t =  (x+

i,t
/
∑Nt

j=1
x+

j,t
). Notice that xt satisfies

〈supp(xt)〉  ≤ Kt,
∑Nt

i=1
xi,t = 1,  and 0 ≤  xi,t ≤  1, for  all  i =  1, .  . .,  Nt .

An important aspect of the parameterization is that  the

coefficients �  are  invariant across assets and time.  Constant

coefficients across time mean  that the coefficients that maximize

the  objective are  the same  for all  dates; therefore, they also maxi-

mize the investor’s objective unconditionally. This  fact implies that

we  can formulate the following unconditional optimization prob-

lem (PP)  with respect to �:

Maximize� �1�(vt+1,pt+1) −  �2
�(pt+1)

�(vt+1)
+  �3O(vt+1,pt+1)

subject to  pt+1 =

Nt
∑

i=1

ri,t+1f (yi,t; �),

where

�(vt+1,pt+1)  =
Cov(vt+1,pt+1)

�(pt+1)�(vt+1)

=
E[(vt+1 −  E[vt+1,])(pt+1 − E[pt+1])]

√

E[(vt+1 −  E[vt+1])2]
√

E[(pt+1 − E[pt+1])2]
, (12)

O(vt+1, pt+1) =  E[1{pt+1≥vt+1}
], (13)

or

O(vt+1, pt+1) =  E[pt+1 − vt+1,], (14)

and f (yi,t; �)  generates weights xi,t that satisfy the cardinality con-

straint, upper and lower bounds, and sum to  one. It is then possible

to estimate the coefficients �  by maximizing the corresponding

sample analog (SPP):

Maximize� �1�T (v, p) −  �2
�T (p)

�T (v)
+  �3OT (v, p)

subject to,  pt+1 =

Nt
∑

i=1

ri,t+1f  (yi,t; �), for each  t =  0, .  . ., T  −  1,

where the definitions of  the terms are the same as in  (PI). The

only  variables to  be computed are the coefficients �  that  are imbed-

ded in f (yi,t; �). The portfolio weights xi,t have  been  parameterized

by a function of the stocks’ characteristics. Now, we  only need

to find the vector �  that usually contains only a  few  elements.

Therefore, the dimensionality of the problem has  been dramati-

cally reduced, but  the  new difficulty with this  parameterization is

that it generates a  non-concave, non-differentiable and non-linear

unconstrained problem which has to be  solved using appropriate

optimization techniques. Again, notice that problems (PI) and (SPP)

are not equivalent, i.e., the optimal xi,t can be  different in  the two

models.

The elements of  the vector �  can  be directly compared (due  to  the

normalization of the characteristics). This comparison gives intu-

ition about the class of  stocks  that  are going to be included in  the

tracking portfolio. Notice that, by  finding �,  we are basically find-

ing a trading strategy. Additionally, Kt is  not fixed to a  constant K

during the calibration period, so,  we can control  the cardinality of

the tracking portfolio in  general ways. However, in our numerical

examples we fix Kt = K  for  all  t.  In the next section, we present a

series of refinements of  the basic model to  allow the inclusion of

portfolio weight  constraints and transaction costs.

5. Refinements and extensions

5.1. Upper  and  lower bounds on portfolio weights

The  portfolio  xt,  resulting from the simple policy in  the last sec-

tion, is not likely to  satisfy the lower and upper bounds It and  ut.

However, we  can address this deficiency  by solving a LP problem

to find new optimal weights xlu
t .  If  we  denote as  Kt the set  of  assets

selected in the “initial” tracking portfolio xt, we  have  the following

LP  model called (UB1):

Minimize
∑

t ∈ Kt

(y+

i,t
+  y−

i,t
)

subject to  li,t ≤  xi,t + y+

i,t
− y−

i,t
≤  ui,t, for each i ∈ Kt,

∑

t ∈  Kt

(y+

i,t
−  y−

i,t
)  = 0,

y+

i,t
,  y−

i,t
≥0, for  each i ∈ Kt

From the LP above, the optimal portfolio  weights will be  given  by

xlu
t = xi,t + y+

i,t
− y−

i,t
for all  i ∈ Kt ,  where we assume the feasibility of

(UB1). An alternative LP  is  given  in Cornuejols and Tütüncü  (2007),

which we  call  (UB2):

Minimize
∑

i ∈  Kt

(yi,t +  zi,t)

subject to  li,t ≤  xlu
i,t

≤  ui,t, for each i  ∈  Kt ,

∑

i ∈  Kt

xlu
i,t = 1,

xlu
i,t

− xi,t ≤ yi,t, for each  i ∈  Kt

xi,t − xlu
i,t

≤ zi,t, for each i  ∈  Kt

yi,t,  zi,t, xlu
i,t

≥0, for  each i ∈ Kt .

As  in  the case of  (UB1), this also assumes the feasibility of (UB2).

Consequently, we can construct a portfolio weight function  xi,t =

f  (yi,t,  �) (that satisfies the lower and upper limits  constraints) by

following the steps in  Section 4 and adding one  more step (Step 5),

which consists of  solving either (UB1) or  (UB2) (if possible).

5.2. Transaction costs and turnover

Transaction costs and turnover are two  very important  variables

in  any portfolio optimization problem since they tell us  how costly

it  is to  implement the optimal strategy and how much the portfolio

changes over time. Even though there are multiple approaches for

rebalancing a  tracking portfolio, we only describe two general cases

which can  be handled by the parametric approach.
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Recall that  at  time t our optimal tracking portfolio (from the opti-

mization problem) is  xt. The current tracking portfolio is no  longer

xt−1 (tracking portfolio chosen at  time t  −  1) due to  the realized

return in the period t  −  1 to t.  We  call  the current tracking portfolio

(unbalanced) as xu
t .  For  every asset  i,  we  have

xu
i,t = xi,t−1

1  + ri,t

1 +
∑Nt−1

i=1
ri,txi,t−1

.  (15)

Now, we can define the turnover of the tracking portfolio at  time

t  as Tt =
∑

i
|xi,t −  xu

i,t
|. The  net  return of the tracking portfolio under

proportional transaction costs  will be given  by

pt+1 =

Nt
∑

i=1

ri,t+1xi,t − TCt(xt),  (16)

where TCt(xt) =

∑

i

ıi,t |xi,t − xu
i,t

| and ıi,t is the proportional trans-

action cost assigned at  time t to  stock i. Hence, we can proceed with

the optimization problem described in  Section 4.

However, it may  not  be  optimal to rebalance the tracking portfo-

lio  completely from xu
t to xt. Now, we apply  a  boundary-type policy

for  transaction costs inspired by the work of  Leland (2000) and also

considered in Brandt et al. (2009). First,  define x˛
t = xt + ˛t(xu

t −  xt)

with ˛t≥0 (notice that  〈supp(x˛
t )〉 is not necessarily less  than  or

equal than Kt)  and introduce  a threshold εt >  0 that “limits”  the

amount of  rebalancing under a certain norm ||·||t.  The parameter

˛t is such that  ˛t ||xu
t −  xt ||t ≤ εt ,  and we  let ˛∗

t be

˛∗
t =

εt

||xu
t −  xt ||t

. (17)

The transaction cost policy is  not to  rebalance if xt and  xu
t are

close enough under the norm ||·||t and the parameter εt (so that

both the norm and the threshold define the no-trade region) and,

depending of the magnitude of the transaction costs, to  rebalance

to  some “intermediate” allocation between xt and  xu
t (given by the

value of a∗
t ) or  to  rebalance to  the  “optimal” allocation xt.  If we

denote xtC
t as the tracking portfolio chosen  for time t in  the presence

of the transaction costs policy,  we have

xtc
t =

⎧

⎨

⎩

xu
t if ||xt − xu

t ||t ≤  εt,

g(xt + ˛∗
t (xu

t −  xt)) = xg
t if ||xt − xu

t ||t > εt and TCt(x
g
t ) < TCt(xt)

xt if ||xt −  xu
t ||t >  εt and TCt(x

g
t )≥TCt(xt)

(18)

where the function g  is  such that it produces feasible allocations

for  the enhanced index tracking problem and ||·||t is usually the

Euclidean distance but scaled by the cardinality of the  portfolio Kt,

i.e., ||xt − xu
t ||t =

√

∑Nt

t=1
(xi,t − xu

i,t
)2/Kt . Finally, notice that it is  also

possible to  establish set frequency  of rebalancing, i.e., daily, weekly,

etc.

6.  Selection of appropriate characteristics

In this  section, we  consider  stock characteristics that can be  used

to  construct the weights of  the tracking portfolio, i.e., the  vector

yi in the portfolio weights function f. In  Brandt et al. (2009),  the

characteristics were selected based on  their capacity to  explain

the cross-section of  expected returns. Consequently, market capi-

talization, book to  market ratio  and lagged return were included in

their corresponding empirical application.

Those characteristics will be identified  with ymkt, ybtm and  yret,

and their  coefficients in  �  will be  denoted by �mkt,�btm and �ret. How-

ever, for tracking purposes it would be beneficial to  include some

characteristics that  can  reflect the ability of a stock to  track or  beat

the index. Based on the tracking objective functions of Gaivoronski

et al. (2005),  and Oh et al.  (2005), and the enhanced tracking objec-

tives  of Canakgoz and Beasley (2008), the  following characteristics

can  be included:

• Correlation of the stock return with  the index return: Given a  time-

window tcorr
w , this characteristic is given by ycorr

i,t
= �(v, ri)  where

v  =  {vt−tcorr
w

, . . ., vt}, and ri =  {ri,t−tcorr
w

, . . ., ri,t}, and its  coefficient

is identified with �corr in  the vector �
• Maximum deviation of the stock return with respect to  the index

return:  Given a time-window tmm
w , this characteristic is given

by  ymm
i,t

=  maxk  ∈ [t−tmm
w ,t]|vk − ri,k|,  and its coefficient is  identified

with �mm in the vector �.
• Mean absolute deviation of  the stock  return with respect of the index

return:  Given a time-window tmad
w , this characteristic is  given by

ymad
i,t

=
∑t

k=t−tmad
w

|vk − ri,k|/(tw + 1), and its coefficient is  identi-

fied with �mad in the  vector  �.

• Beta deviation: Given a  time-window t
ˇ
w ,  this characteristic is

given  by y
ˇ
i,t

=
∣

∣ˇi,t −  1
∣

∣,  where ˇi,t ,  is the OLS  slope of  the

regression ri = ˛i,t + ˇi,tv + εt where v = {v
t−t

ˇ
w,...,

vt}  and ri =
{

r
i,t−t

ˇ
w,...,

ri,t

}

,  and its  coefficient is  identified with �ˇ in the

vector �.
• Alpha: Given a time-window t˛

w (usually equal to  t
ˇ
w), this char-

acteristic is  given by y˛
i,t

=  ˛i,t , where ˛i,t is the OLS intercept

of  the regression ri = ˛i,t + ˇi,tv + εt where v =  {vt−t˛
w,...,vt

} and

ri = {ri,t−t˛
w,...,ri,t},  and its coefficient  is identified with �˛ in the

vector �.

7. Numerical example - enhanced tracking of  the S&P500

In this section, we present an empirical application of  the

parametric index  tracking and enhanced indexation model. We

consider the S&P500 as the index with the  objective as defined in

Section 3.  We  report the optimization results, more  specifically,  the

in-sample and out-of-sample performance of  the tracking portfo-

lios.  First,  we present some  relevant information about the  data

used in  this particular application.

7.1. Data

To implement the  model, the returns of  the index, the returns

of  the stocks and the time series of characteristics are needed.

The  time frequency chosen was daily and the calibration period

was 124 days to be consistent with common applications in

the literature that use 75–250 days for calibration. For  example,

Gaivoronski et al. (2005) used different lengths of the calibration

period: 75, 150 and 250 trading days. Our calibration period corre-

sponds to  the period 2011/10/03 to  2012/03/30. The  out-of-sample

performance is  evaluated using the next 42 days  (two months of

trading) and corresponds to  the period 2012/04/02–2012/05/31.

The  daily index returns and stock  returns were obtained using

the CRSP database5 and information of index  constituents at the

end of  each month was obtained through the Compustat database.

The final number of stocks was 475 with the  following criteria to

include  a stock in the sample:

• presence in  the S&P500 at  the end of each month of  the calibration

period;
• presence of a complete history  of returns during the calibration

period;

5 In the case of the  stocks  they correspond to  the  holding period return on  CRSP

(including cash  and price adjustments).
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Own elaboration.

• maintenance of symbol during the calibration period (i.e., no

change of  stock name).

For characteristics, we  used market capitalization, alpha and

beta deviation. For market capitalization, for each date t  we multi-

ply the price of  the stock  times the number of shares outstanding.

For other characteristics, i.e., alpha and beta deviation, we  used

t˛
w = t

ˇ
w =  42 trading days to  compute the appropriate value of the

definitions in Section 6. Finally, based on some empirical studies  of

DeMiguel, Garlappi, and Uppal (2009), x̄i,t was  considered to  be the

equally weighted portfolio in  Step 1  of  Section 4.

7.2. Working with three characteristics: market capitalization,

beta deviation and  alpha

As  noted  earlier, we work with three characteristics: market

capitalization, beta deviation and alpha.  Their weights are given

by  �mkt,�ˇ and �˛, respectively. Market capitalization was selected

due to its  capacity to  explain returns  as well as the fact that the

S&P500 is a market-capitalization index. Alpha  and beta deviation

contain important information about a  particular stock relative to

the  index. In  particular, ˛  is  used to  assess the ability of a stock

to outperform the index and can also be  considered as a  measure

of momentum. Beta is used to  assess the risk of the stock compared

to  the index. Additionally, both are computed from the  same OLS

regression, and have been  used  recently in the enhanced indexation

problem (for  example, in Canakgoz and Beasley (2008)).  Note that

yˇ in  Section 6 was defined as |ˇ−1|. Consequently, low values of

this characteristic indicate that the particular  beta is close to  1, and

after the cross-section normalization it  will  take  negative values.

In this part of the paper, we consider various  cases of the objec-

tive function in  (PP). In  the first case,  we  maximize the correlation

coefficient of the returns of the index and the tracking portfolio, i.e.,

�1 = 1, �2 = 0,  and �3 = 0. The second  case includes in  the objective

the ratio of the standard deviations, i.e., �1 = 1,  �2 = 1, and �3 = 0.

While we do  not include the  enhanced component in these two

initial cases, we  observe different behavior of the objective due

to  different effects of the characteristics. These cases  are impor-

tant  since  they correspond to  versions of a classical index tracking

problem that considers the correlation coefficient and the vari-

ance of the tracking portfolio. In particular, we  wish to  track  the

S&P500 using  75 stocks (i.e., 15% of its  components). To construct

the function f, we  follow the steps given in Section 4 using as initial

tracking portfolio the equally weighted portfolio. Also, we  do not

include transaction costs, or  lower and upper bounds on the portfo-

lio  weights. The  objective is  computed using the calibration period

of  124  days corresponding to  the trading days  between 2011/10/03

and 2012/03/30 (as  mentioned in the Data section). Since we  are

using a  calibration period,  it is clear that we  are  using problem

(SPP), which is the sample analog of problem (PP).
Figs. 1 and 2 correspond to the case of �1 =  1,  �2 = 0,  and �3 = 0

with K  =  75. In  Fig.  1,  we  show  two  surfaces, the  upper one corre-

sponds to  fixing �mkt = 6  and moving �˛ and �ˇ between −6 and 6

in 0.5 steps, and the lower surface corresponds to  �mkt = −6 using

the same range for  the  other  two coefficients. Notice that higher

values of �mkt include stocks with greater presence in  the index

in the tracking portfolio. As expected, this  fact increases the cor-

relation coefficient of the tracking portfolio and the index.  With

�mkt =  6 we  obtain correlation coefficients higher than 0.99; while

using �mkt = −6, we  obtain  maximum values that  are  approximately

0.89.

In  Fig. 2,  we show  a color map of  the surface corresponding

to  �mkt = 6. From this  figure, we  can observe  the influence of �ˇ

and �˛ in  the maximization of the correlation coefficient. Notice

that  the  values  of �˛ that maximize the objective is  centered on

zero; therefore, alpha appears to  have  little relevance for maximiz-

ing the correlation coefficient. The  case of �ˇ is relatively similar by

presenting values centered at zero for the maximum values of the

objective.

Next, we include in  the objective the ratio of the standard devi-

ations; recall that  by giving weight to this  part of the objective
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(�2 > 0)  we aim to reduce the variance of the tracking portfolio with

respect to  the index. For motivational purposes, we now  use �1 = 1,

�2 = 0, and �3 = 0 and K  =  75. The  new objective is  a more complete

tracking objective since we both  maximize the  correlation coeffi-

cient and keep the ratio of the variances close to  1. Under the same

conditions as  in the previous case, we similarly display Figs. 3  and 4.

In Fig.  3,  we  again observe that  for tracking purposes, giving

more weight to  stocks with high market capitalization results in

better  tracking performance (both correlation  and standard devia-

tions ratio). Additionally, as we  can  observe in Fig.  4,  higher  values

of the objective function  correspond to  small  values of �ˇ, i.e., stocks

with  beta close to  1  are more likely to  be considered. Therefore, by
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including stocks with a beta close to 1,  we  can expect somehow

to match the variances of  the index and the tracking portfolio. The

effect of �˛ for tracking purposes is not  very significant since the

higher values of the objective occur around �˛ =  0. Finally, as we can

observe from all the previous  results, depending of the nature of the

objective, the weights given to  the characteristics are  different and

are in line with empirical facts in  the financial data.

We  also include a  case  with the enhanced component in  the

objective function. The outperformance measure  selected was

the average daily excess returns  of  the portfolio over the index (in

percentage). In Figs. 5 and 6  (color map), we  show  the results for

the case �1 = 1,  �2 = 1, and �3 = 3 (always keeping K =  75) and fix-

ing �mkt = 6. We can observe that the  higher values of the objective

occur in  the left  upper corner  of  the plot  i.e.,  low  �ˇ and  high �˛.  This

indicates that including high alpha stocks increases the possibility

of  higher returns of the tracking portfolio while high values  of �mkt

and low  values of �ˇ collaborate with the strict tracking component

(correlation and variance).
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7.3. Optimizing with  three characteristics

In  this part, we continue with the objective given  in  (PP)  with

coefficients given by �  =  (�mkt,  �˛, �ˇ). Again, we  do  not include

transaction costs or  lower and upper bounds on  the portfolio

weights. We study the effects of changing K, �1 and  �3 in  the objec-

tive function. We impose a constraint of the standard deviation

ratio in the optimization problem to  avoid exploring the effect of

�2. In-sample and out-of-sample results are presented.

More important  than finding the optimal value of the problem

(PP), we focus on the effects and behavior of the selected charac-

teristics in the enhanced indexation problem. Again, since we are

optimizing over a  fixed period of history, we  are  basically solving

problem (SPP)  which is the sample counterpart of problem (PP).

Because of that, we sketch our  “optimization” procedure as follows:

Step 1  Construct a  grid of  values of  the coefficients.

Step 2  Evaluate the (particular) objective function for each of  the

vectors of the grid.

Step 3 Impose a  constraint on the standard deviations ratio to  filter

the combination of  coefficients to be  considered.

Step 4  Sort the (filtered) vector of  coefficients by their  objective

value. Group the sorted data into n  subgroups.

Step 5  For the subgroup with the greatest values  of  the objec-

tive, report the average value of  the coefficients. Those values are

considered estimates of the “optimal” values.

Step 6  Evaluate the average coefficients found in Step 5  in  the

corresponding objective function. Report the objective function

value as  well as other relevant  variables.

The results correspond to � =  (�mkt, �˛,  �ˇ) with −6 ≤  �mkt,  �˛,

�ˇ in 0.5  intervals. This produces 15 625  vectors of characteris-

tics to  evaluate for  each selected K. Also, we  impose the constraint

that the ratio of  standard deviations should be less  than  or  equal

to 1.05.  After filtering the characteristics that satisfy the aforemen-

tioned constraint in  Step 3, we took n =  150 to be the number of

subgroups in  Step 4. To  define �˛ and �ˇ, we used  a  time window

of 42 trading days. The  measure of out-performance Ot is the excess

return of the tracking portfolio over the index. The  cardinality val-

ues considered were  K =  25,  30,  40 and 50. These are usual values

for K; for  example, Canakgoz and Beasley (2008) in  their  empirical

application used 40 stocks of a  universe of 457 to  track the S&P500.

While no transactions costs are  considered in  this section, they are

considered in  the next section.

We also  used a  non-linear optimization package, KNITRO 6.0,

to  solve the optimization problem to  verify the accuracy of  the

answers given by our procedure. The results were similar on aver-

age;  however, the optimal solution found with the solver was

sensitive to  the starting point, which suggests performing a pre-

liminary  exploration analysis to  select appropriate starting points.

Also, note  that the lack of structure in the optimization problem

makes it difficult to  claim optimality.

Tables 1–4  present detailed information about the in-sample

and out-of-sample performance of  the “optimal” tracking portfo-

lios  of  this  section. Each table corresponds to  a particular choice

of K(K = 25, K  =  30, K  = 40, K =  50)  and shows the following informa-

tion: �3 (with �1 always fixed at  1), the “optimal” coefficients (using

the  optimization procedure explained before), the objective func-

tion  values (recall that the correlation  coefficient and the standard

deviation ratio  are dimensionless but the average daily return

was taken in  percentage), the  correlation coefficient (�)  of  the

index and the “optimal” tracking portfolio returns during the cal-

ibration/testing period, the standard deviation ratio (SD.R.) of  the

returns of  the  tracking portfolio and the  index  during the calibra-

tion/testing period, the average yearly annualized excess  return of

the tracking portfolio over the index during the calibration/testing

period (Ret.%/y), the average probability of beating the index over

the calibration/testing period (Prob %),  alpha in percentage per year
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Table  1

Results in-sample and  out-of-sample for �1 =  1 and  K =  25.

�3 �mkt �˛ �ˇ Obj. �  SD.R. Ret. (%/y) Prob. (%) �  (%/y)  ̌ T (%/d) wman (%) wmin (%)

In-sample

0 4.728 0.076 −0.641 0.966  0.966 0.965 −4.04  46.77  −3.19 0.933 0.97 5.51 3.06

0.5 4.283 0.565  −0.348 0.956  0.960 0.969 −2.37 48.67  −2.50 0.930  1.33 5.55 3.13

0.75 4.207  0.75  −0.293 0.956  0.962 0.973 −2.07  47.95  −2.04 0.936 1.84 5.58 3.14

1 4.502  0.905 −0.255 0.957  0.963 0.983 −1.46 48.39  −0.76  0.946 2.23 5.60  3.13

1.0625 4.676 0.995  −0.204 0.957  0.961 0.989 −0.82 50.00 −0.18  0.951 2.36 5.61 3.13

1.125 4.741 1.037 −0.222 0.955 0.960 0.992 −0.99 48.39  −0.36  0.952 2.39 5.61 3.13

1.1875 4.704  1.000 −0.204 0.957  0.961 0.989 −0.86 50.00 −0.22  0.951 2.33 5.61 3.13

1.25 4.685 1.204 −0.333 0.947  0.959 0.988 −2.37 47.80  −1.82 0.947 2.59 5.63 3.12

1.375 4.685 1.426 −0.481 0.952  0.957 0.992 −1.00 45.97  −0.34  0.949 3.05  5.67 3.12

1.5 4.754 1.722 −0.722 0.946  0.954 1.006 −1.25 48.17  −2.71 0.959 3.51 5.75 3.09

2 4.315 3.074 −1.463 0.932  0.945 1.038 −1.65 48.39  −1.41 0.981 6.49 6.31 2.99

3 3.741 4.685 −2.704 0.970 0.938 1.043 2.72 51.61 2.92 0.985 9.86 6.91 2.93

4 3.722 4.778 −2.556 1.022 0.929 1.047 6.02  53.23  5.99  1.002 10.12  6.88 2.94

5 3.722 4.630 −2.241 1.017 0.930 1.049 4.45 50.81 4.33  1.009 9.71 6.81 2.96

Out-of-sample

0  4.728 0.076 −0.641 0.940 0.940 1.002 2.85 52.38  5.55  0.942 5.60  3.19 0.46

0.5  4.283 0.565  −0.348 0.947  0.942 1.000 2.78 47.62  5.53  0.941 5.46 3.15 1.05

0.75 4.207  0.750 −0.293 0.951  0.943 1.000 2.67 54.76  5.31  0.944 5.45 3.12 1.42

1 4.502  0.905 −0.255 0.962  0.948 1.000 3.57 52.38  6.02  0.948 5.44 3.10  2.06

1.0625 4.676 0.995  −0.204 0.960 0.950 1.007 2.45 50.00 4.49  0.956 5.44 3.10  2.29

1.125 4.741 1.037 −0.222 0.961  0.947 0.997 3.20  47.62  5.86  0.943 5.44 3.09  2.65

1.1875 4.704 1.000 −0.204 0.961  0.950 1.007 2.45 50.00 4.49  0.956 5.44 3.10  2.29

1.25 4.685 1.204 −0.333 0.956  0.942 0.985 2.76 52.38  6.14  0.928 5.45 3.08  3.30

1.375 4.685 1.426 −0.481 0.958  0.943 0.981 2.85 52.38  6.37  0.925 5.46 3.06  3.90

1.5 4.574 1.722 −0.722 0.964  0.945 0.989 3.32 50.00 6.40  0.935 5.52 3.05  4.19

2 4.315 3.074 −1.463 0.988  0.929 1.026 7.80  52.38  10.10 0.953 5.88 3.04  8.03

3 3.741 4.685 −2.704 0.955  0.910 1.029 3.85 50.00 6.86  0.937 6.50  3.01  11.52

4 3.722 4.778 −2.556 0.957  0.908 1.028 3.12 45.24  6.23  0.934 6.52 3.02  11.42

5 3.722 4.630 −2.241 1.023 0.914 1.040 5.69 50.00 8.08  0.950  6.48 3.03  11.64

Own elaboration.

(˛%/y) and beta (ˇ) of the  regression of the portfolio  returns against

the index returns during the calibration/testing period, the average

daily  turnover as defined in Section 5.2 (T%/d), and the average max-

imum (wmax)  and minimum (wmin)  average weight  of the  tracking

portfolios (given in percentage). Notice that  some of variables are

computed as averages during the  calibration/testing period since

every  day the tracking portfolios change due to  different values  of

the (normalized) characteristics.

Table  2

Results in-sample and  out-of-sample for �1 =  1 and  K =  30.

�3 �mkt �˛ �ˇ Obj.  �  SD.R. Ret. (%/y) Prob. (%)  ˛  (%/y) ˇ  T  (%/d) wmax (%)  wmin (%)

In-sample

0 4.707 0.598  −0.891 0.967 0.967 0.987  −4.96 42.74  −4.39 0.954 1.44 4.85 2.47

0.5  4.337 0.402 0.087 0.963 0.968 1.007 −2.46 47.77  −2.87 0.976 1.05  4.85 2.51

0.75  4.337 0.707 −0.141 0.961 0.968 1.006 −2.17 48.01 −3.42 0.974 1.58 4.85 2.50

1  4.679 1.411 −0.857 0.957 0.964 1.011 −1.65 48.89  −3.78 0.974 2.67 4.95 2.46

1.0625 4.482 1.804 −1.321 0.957 0.963 1.003 −1.40 47.16  −2.80  0.966 3.70  5.18 2.44

1.125  4.589 2.500 −1.821 0.958 0.964 0.991  −1.35 48.00  −1.55 0.956 5.28 5.46 2.41

1.1875  4.571 2.750 −2.071 0.957 0.959 0.992  −0.50 48.56  −1.62 0.952 5.96 5.59 2.40

1.25  4.429 3.321 −2.375 0.956 0.955 1.006 0.06 47.58  0.57  0.961 6.99 5.78 2.38

1.375  4.196 3.643 −2.500 0.957 0.949 1.010 1.35 49.19  1.89 0.959 7.79 5.89 2.38

1.5  4.018 4.357 −3.107 0.951 0.942 1.004 1.46 50.81  2.17 0.946 8.51 6.09 2.37

2  4.035 4.543 −3.057 0.958 0.943 1.016 1.86 52.42  2.41 0.958 8.76 6.08 2.38

3  3.935 5.189 −3.078 0.993 0.935 1.049 4.98 52.42  5.23 0.981 9.65 6.10 2.39

4  3.814 5.421 −3.156 1.034 0.930 1.049 6.77 51.81  5.66 0.978 10.13  6.12 2.39

5  3.752 5.874 −3.204 1.049 0.926 1.050 6.36 53.23  6.50  0.990 10.64  6.12 2.40

Out-of-sample

0  4.707 0.598  −0.891 0.957 0.957 1.001 1.19 52.38  3.14 0.958 4.84 2.49 1.15

0.5  4.337 0.402 0.087 0.975 0.959 1.009 8.11 66.67  9.69 0.968 4.72 2.51 1.05

0.75  4.337 0.707 −0.141 0.979 0.958 1.004 7.61 61.90 9.47 0.962 4.72 2.51 2.19

1  4.679 1.411 −0.857 0.969 0.952 1.000 4.48 50.00 6.76 0.952 4.79 2.47 3.87

1.0625 4.482 1.804 −1.321 0.968 0.954 0.991  3.40 52.38  6.00 0.945 4.94 2.47 4.69

1.125  4.589 2.500 −1.821 0.956 0.944 0.981  2.75 54.76  6.20  0.927 5.09  2.50 5.90

1.1875  4.571 2.750 −2.071 0.952 0.944 0.982  1.81 54.76  5.22 0.927 5.16 2.50 6.29

1.25  4.429 3.321 −2.375 0.954 0.943 0.971  2.23 47.62  6.18 0.916 5.28 2.50 7.85

1.375  4.196 3.643 −2.500 0.961 0.942 1.005 3.52 47.62  6.06  0.946 5.37 2.50 9.19

1.5  4.018 4.357 −3.107 0.944 0.933 1.005 1.90 45.24  4.79 0.938 5.56 2.49 10.38

2  4.035 4.543 −3.057 0.945 0.927 1.010 2.28 42.86  5.27 0.936 5.58 2.49 10.48

3  3.935 5.189 −3.078 0.940 0.924 1.009 1.36 47.62  4.49 0.932 5.71 2.48 11.62

4  3.814 5.421 −3.156 0.983 0.914 1.016 4.39 52.38  7.76 0.929 5.77 2.48 11.51

5  3.752 5.874 −3.204 1.001 0.894 1.062 5.53 50.00 7.94 0.950 5.83 2.47 12.43

Own elaboration.
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Table 3

Results in-sample and out-of-sample for �1 =  1  and K = 40.

�3 �mkt �˛ �ˇ Obj. � SD.R. Ret. (%/y) Prob. (%)   ̨ (%/y) ˇ  T (%/d) wmax (%)  wmin (%)

In-sample

0  4.389 0.433 −0.233 0.975  0.975  1.013 −1.85 45.16 −1.69 0.988  1.13 3.91 1.79

0.5  4.500 0.344 0.167 0.973  0.975  1.016 −0.85 47.98 −1.91 0.991  0.89 3.94 1.80

0.75  4.789 0.278 0.756 0.972  0.973  1.011 −0.47 50.00 −0.26 0.984  1.06 4.03 1.82

1  4.125 3.071 −1.554 0.965  0.961  1.048 1.14 48.00 0.53 1.006 6.19 4.55 1.73

1.0625  3.893 3.643 −2.018 0.964  0.955  1.039 2.28 46.77 2.38 0.992  7.57 4.76 1.73

1.125  3.857 4.018 −2.286 0.974  0.954  1.040 4.46 51.61 4.57 0.992  8.22 4.84 1.73

1.1875 3.804 4.393 −2.571 0.971 0.949  1.043 4.78 52.42 4.92 0.990 8.72 4.92 1.73

1.25 3.821  4.982 −3.000  0.982  0.947  1.039 7.41 55.65 7.63 0.984  9.48 4.98 1.72

1.375  4.286 5.179 −3.179 0.975  0.949  1.034 4.85 52.42 5.10 0.982  9.16 4.96 1.72

1.5  4.188 5.143 −3.179 0.981  0.948  1.038 5.68 50.81 5.90 0.984  9.34 4.97 1.72

2  4.100 5.245 −3.234 1.001 0.949  1.034 6.71 54.03 6.98 0.981  9.34 4.99 1.72

3  4.045 5.335 −3.278 1.031  0.948  1.035 7.23 54.84 7.50 0.981  9.49 5.00 1.72

4  3.970 5.578 −3.301 1.045 0.945 1.041 6.50 55.65 7.91 0.984  9.89 5.00 1.72

5  3.902 5.856 −3.310 1.093  0.943  1.047 7.87 55.65 8.05 0.987  10.08 5.00 1.73

Out-of-sample

0  4.389 0.433 −0.233 0.974  0.974  1.007 3.57 66.67 4.45 0.981  3.84 1.82 0.80

0.5 4.500 0.344 0.167 0.989  0.978  1.025 5.44 61.90 5.31 1.003 3.82 1.79 0.71

0.75  4.789 0.278 0.756 0.996  0.977  1.024 6.37 66.67 6.34 1.001 3.83 1.81 0.94

1  4.125 3.071 −1.554 0.971  0.962  1.003 2.33 54.76 3.95 0.965  4.20 1.79 7.18

1.0625  3.893 3.643 −2.018 0.968  0.956  1.006 2.88 50.00 4.68 0.961  4.37 1.79 8.46

1.125  3.857 4.018 −2.286 0.960 0.950 0.991 2.43 50.00 5.16 0.942  4.46 1.79 9.10

1.1875  3.804 4.393 −2.571 0.961  0.941  1.000 4.30  57.14 7.12 0.941  4.54 1.79 9.69

1.25  3.821 4.982 −3.000  0.942  0.930 1.020 2.48 54.76 4.92 0.948  4.62 1.80 10.43

1.375 4.286 5.179 −3.179 0.940 0.930 1.017 1.77 54.76 4.25 0.947  4.57 1.80 9.95

1.5  4.188 5.143 −3.179 0.941  0.932  1.020 1.54 54.76 3.85 0.950 4.58 1.80 9.99

2  4.100 5.245 −3.234 0.946  0.931  1.019 1.87 54.76 4.24 0.949  4.61 1.80 10.48

3 4.045 5.335 −3.278 0.972  0.927  1.027 3.90  52.38 6.18 0.952  4.63 1.80 11.61

4  3.970 5.578 −3.301 0.988  0.922  1.047 4.30  50.00 5.98 0.964  4.67 1.80 11.82

5  3.902 5.856 −3.310 1.031  0.919  1.056 5.82 54.76 7.23 0.970 4.70 1.80 10.95

Own elaboration.

Table 4

Results in-sample and out-of-sample for �1 =  1  and K = 50.

�3 �mkt �˛ �ˇ Obj. � SD.R. Ret. (%/y) Prob. (%)   ̨ (%/y) ˇ  T (%/d) wmax (%)  wmin (%)

In-sample

0  4.378 0.367 −0.044 0.982  0.982  1.005 −2.43 45.97 −2.25 0.986  0.78 3.34 1.36

0.5 4.656  0.389 0.811 0.978  0.981  1.022 −1.33 49.05 −2.31 1.002 1.21 3.45 1.37

0.75  4.567 0.878 0.767 0.976  0.980 1.026 −1.20  48.79 −1.31 1.005 1.88 3.44 1.37

1  4.875 2.661 −0.536 0.976  0.973  1.049 0.91 47.58 0.63 1.021 4.47 3.60 1.32

1.0625  4.893 2.911 −0.732 0.976  0.970 1.048 1.56 47.58 1.28 1.021 4.68 3.65 1.32

1.125  4.714 3.466 −1.268 0.975  0.966  1.050 1.90  53.23 1.67 1.018 5.78 3.82 1.32

1.1875  4.750 3.929 −1.679 0.984  0.965  1.049 4.17 51.61 4.01 1.012 6.73 3.93 1.32

1.25  4.696 4.375 −2.107 0.980 0.962  1.045 3.71 52.42 3.64 1.005 7.35 4.04 1.32

1.375  4.375 4.589 −2.482 0.986  0.958  1.040 5.19 54.84 5.24 0.997  8.27 4.15 1.32

1.5  4.357 4.714 −2.589 0.990 0.957  1.039 5.66 55.65 5.73 0.995  8.42 4.17 1.32

2  4.179 4.982 −2.750 1.003 0.955  1.036 6.23 57.26 5.54 0.990 8.77 4.22 1.32

3  3.911 5.232 −3.018 1.041  0.951  1.036 7.85 58.06 5.71 0.986  9.05 4.28 1.33

4  3.750 5.143 −3.000  1.055  0.952  1.034 6.72 58.87 6.23 0.984  9.25 4.29 1.33

5  3.714 5.214 −3.071 1.100 0.952  1.036 7.77 59.68 6.07 0.986  9.46 4.30 1.33

Out-of-sample

0  4.378 0.367 −0.044 0.981  0.981  1.004 6.60  64.29 7.34 0.985  3.28 1.34 0.86

0.5  4.656 0.389 0.811 0.998  0.982  1.027 8.40  69.05 7.97 1.009 3.26 1.38 1.37

0.75  4.567 0.878 0.767 0.994  0.978  1.020 5.80  61.90 5.93 0.997  3.20 1.41 2.31

1  4.875 2.661 −0.536 0.995  0.971  1.000 6.15 57.14 7.52 0.972  3.35 1.38 5.27

1.0625  4.893 2.911 −0.732 0.983  0.968  0.991 3.74 57.14 5.67 0.959  3.39 1.38 5.62

1.125  4.714 3.466 −1.268 0.968  0.968  1.001 0.10 47.62 1.55 0.968  3.52 1.37 6.85

1.1875  4.750 3.929 −1.679 0.973  0.959  1.006 3.06  52.38 4.72 0.965  3.62 1.37 7.55

1.25  4.696 4.375 −2.107 0.981  0.953  1.014 5.74 54.76 7.34 0.967  3.72 1.38 8.13

1.375  4.375 4.589 −2.482 0.968  0.944  1.022 4.48 54.76 6.14 0.965  3.81 1.38 8.89

1.5  4.357 4.714 −2.589 0.972  0.946  1.016 4.54 54.76 6.37 0.961  3.83 1.39 9.28

2  4.179 4.982 −2.750 0.982  0.940 1.024 5.45 57.14 7.27 0.962  3.90 1.38 9.92

3  3.911 5.232 −3.018 0.981  0.932  1.031 4.20  57.14 6.06 0.961  3.96 1.38 10.10

4 3.750 5.143 −3.000  1.011  0.936  1.041 4.90  57.14 6.13 0.974  3.98 1.38 10.08

5 3.714 5.214 −3.071 1.027  0.935  1.042 4.72 52.38 5.90 0.975  3.99 1.38 10.10

Own elaboration.
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Fig. 7. Optimal coefficients (�mkt ,  �˛ , �ˇ) as a function of  �3 with  �1 = 1, using the  excess return  as  performance measure, and under the  constraint that the standard deviations

ratio  should be ≤1.05.

Own elaboration.

7.3.1. In-sample performance  for �  =  (�mkt, �˛, �ˇ)

First, we study the behavior of the “optimal” coefficients as

a function of the cardinality parameter K and the coefficient �3.

Additionally, we  assess the effect of �3 and K  on the correlation

coefficient, the portfolio return, the probability of out-performance,

turnover and the average  maximum and minimum weight given  to

an asset in  the tracking portfolio.

Fig. 7  shows the optimal value of the  vector  of coefficients. We

observe that  all  plots show similar behavior. The “optimal” policies

then appear independent of the cardinality of  the tracking portfo-

lio. For  low values of �3, the more important characteristic is  �mkt

which takes positive values (around 4);  on the other  hand, �˛ and �ˇ

do not appear to be very significant. For  tracking purposes, this  sug-

gests giving more weight to  stocks with high market capitalization

(relative to  other stocks in  the index). As we increase �3,  and give

more importance to the excess return of the tracking portfolio, we

tend to  increase the participation of stocks with high alpha and low

beta deviation. By increasing �˛,  we put  preference to stocks with a

recent history of  relatively high alpha; but, to  maintain the variance

ratio  constant, it  is necessary to  include stocks with low beta devia-

tion (|ˇ−1|), i.e., stocks  with beta close to  one. Also, notice that, after

certain values  of  �3, the behavior of  the optimal characteristics is

practically constant (�3 ≈  3  for  K ≈  25,  �3 ≈  1.5  for K =  30,  40 and 50).

In conclusion, the tracking performance is mostly given  by stocks

with high market capitalization, while the enhancement perfor-

mance is  given by stocks with high alpha; however, it is necessary

to include stocks with low beta deviation to control the  standard

deviation ratio  and to  maintain relatively high correlation with  the

index.

The behavior of the portfolio weights is shown in  Fig. 8.  We

report the average maximum and minimum weights in  the “opti-

mal” tracking portfolios as a  function of  �3.  In general, we can

observe that  the tracking portfolios tend  to be well-diversified,

avoiding excessive concentration in certain assets. They also avoid

very small positions in  the assets, especially for  low values of  K.

For example, when K  = 25,  the average maximum weight is close to

7%  while the average minimum weight is  around 3%.  For K  = 50, the

average maximum weight is  close to 4% while the minimum weight

is around 1.3%. Finally, as expected, the  maximum and minimum

weights are decreasing functions of  K.

Fig. 9 shows the  behavior  of  the correlation coefficient (�) of

the tracking portfolio  and the index for  different values  of �3 and K

Notice  that in  general (for a fixed  K), �  is  a decreasing function

of  �3,  i.e., under “constant” variance the enhancement compo-

nent tends to  reduce the correlation to  search for more profitable

stocks. When �3 = 0 with K  =  50, we have  � ≈ 0.98  and with K  =  25 we

have that � ≈  0.97.  However, for  �3 = 5  and K  =  50 we have  �  ≈  0.95,

and �  ≈  0.93 when  K  = 25. Additionally, as expected, the correlation

coefficient is generally  higher for  higher values of K  (especially for

low values  of �3). This observation indicates  that  diversification

improves the  performance relative to  �.

The  behavior of  the standard deviation ratio is shown in  Fig. 10.

By  construction, the ratio  should be  less than 1.05  (recall that the

reported values  are reported for  the vector of average coefficients).

Notice that  for low values of  �3,  the variance ratio  tends  to

be smaller due to  the presence of high market capitalization

stocks that generally are less  volatile than the index. But,  as �3

increases, so do positions in  riskier stocks, increasing the ratio.

Figs. 11 and 12 show, respectively, the behavior of  the  expected

annualized return of  the tracking portfolio (in  excess of the index),

and the probability that  the tracking portfolio beats the  index. Both

variables present the similar logical pattern,  i.e., as �3 increases, the

corresponding variable tends to  increase; but,  for high values of �3,

both variables tend to stabilize. Hence, in  general, the higher the
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Fig. 8. Average maximum (wmax) and minimum (wmin) weight  in the tracking portfolio for different  values of K and �3 using (ymkt , y˛ , y�)  as  characteristics.

Own elaboration.

K, the higher  the return and the probability of  out-performance.

This means that more ˛-aggresive and diversified portfolios show

higher probability of beating the index under a similar variance.

Fig. 13 displays the  in-sample beta (ˇ) for  the different tracking

portfolios. For  K  =  25, K =  30 and low and moderate values of �3, the

tracking portfolios tend to  produce  values of  ̌ lower than one. This

can be explained by the presence of stocks  with high market capi-

talization which usually have smaller betas than  one.  However,  for

�3 approximately greater than 2.5, beta remains  almost constant

fluctuating between 0.98  and 0.99. In  the case of K  = 40  and K =  50,

because of the greater level of diversification, beta fluctuates

between 0.98  and 1.02 for all values  of  �3,  i.e., basically the loss in  �
is compensated by  an increment in  the ratio of standard deviations.

Notice that  an investor can construct a tracking portfolio that

matches the returns of the index (excess  return close to  zero)

by  choosing the appropriate trade-off parameter �3.  For exam-

ple, in  the case of  K  = 50, the corresponding �3,  that generates a

tracking portfolio with approximately zero excess return over the

index is between 0.75 (annualized excess  returns of −1.20%) and

1  (annualized excess returns of 0.91%). To  find a �3,  that generates

closer returns, the  investor can perform a  line search. Addition-

ally, note that tracking policies for low  values  of �3 depend heavily

0
0.92

0.93

0.94

0.94

0.96

0.97

0.98

0.99
K=25
K=30
K=40
K=50

Correlation coefficient (p)

C
o
rr

e
la

ti
o
n

0.5 1 1.5 2 3 43.5 4.5 52.5

λ3

Fig. 9.  Correlation coefficient of  the  tracking portfolio for  different values of  K  and  �3 using (ymkt ,  y˛ , y�)  as characteristics.

Own  elaboration.



L. Chavez-Bedoya, J.R. Birge / Journal of Economics,  Finance and Administrative Science  19 (2014)  19–44 33

0

0.96

0.98

1

1.02

1.04

1.06

K=25
K=30
K=40
K=50

Std. Deviation ratio

R
a

ti
o

0.5 1 1.5 2 3 43.5 4.5 52.5

λ3

Fig. 10. Ratio  of standard deviations of the  tracking portfolio with respect to  the  index for  different values of  K  and  �3 using (ymkt ,  y˛ , y�)  as characteristics.

Own  elaboration.

on the inclusion of stocks  with relative high market capitalization.

Consequently, this generates portfolio strategies that are heavily

concentrated in one class of  assets and might produce excessive

dependence on the performance of  that  group. This observation

recommends choosing tracking policies which  offer greater levels

of diversification even though they  may  lose some tracking perfor-

mance.

7.3.2. Out-of-sample performance for  � =  (�mkt,  �˛,  �ˇ)

The out-of-sample period consists of the 42 trading days

(2 months) immediately following the calibration period. The  main

issue of  the out-of-sample performance is  to  check whether the

optimal in-sample portfolio  policy (vector of coefficients) is  robust,

i.e., whether the main properties of the in-sample period are  pre-

served. To perform a “hard” out-of-sample test, we maintain the

value of the vector of  coefficients fixed at  their optimal in-sample

value during the testing period, i.e., we  do not update the value of

the vector as new information arrives. We  present the compari-

son between  the in-sample and out-of-sample performance for  all

the variables considered in  the previous section and additionally

includes the tracking portfolio turnover.

First, we compare the in-sample and out-of-sample objectives.

The  information is summarized in  Fig.  14,  which includes four plots,

each corresponding to a particular value of K (25,  30, 40 or 50). In

general, the in-sample and out-of-sample objectives are  relatively

close. Recall  that  the objective is the sum of the sample correlation
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coefficient of returns and �3 times  the average daily excess return of

the tracking portfolio over the index (in percentage). Notice that for

values of �3 approximately less than  1.5, we observe that  both per-

formances are similar. This suggests that  the tracking performance

is more robust  than the enhancement performance, i.e., high  mar-

ket  capitalization and moderate values of  alpha and beta deviation

generate robust portfolio policies. On  the other hand, for higher

values of �3, the in-sample performance is generally better out-of-

sample. These facts confirm the intuition that  finding a profitable

portfolio policy is harder than finding a good tracking-only portfolio

policy.

Figs. 15 and 16 contain the in-sample and out-of-sample behav-

ior of the correlation coefficient (�)  and the standard deviation

ratio. In  the case of  �, we  can observe that out-of-sample perfor-

mance improves as K  increases, especially for low  values of �3.  Also,

as �3 increases, the in-sample and out-of-sample results present

some  significant but reasonable differences. Aggressive portfolio

policies tend  to  lose  out-of-sample performance in  �.  With  respect

to  the standard deviation ratios, we observe that, in  the out-of-

sample period, the constraint on the standard deviations ratio (less

than or  equal to  1.05) is maintained with the exception of two cases

corresponding to  very aggressive allocations.

Figs. 17 and 18 exhibit the in-sample and out-of-sample per-

formance of the annualized average return and the probability to

beat the index. In  general, both plots show the same pattern. We

can  clearly observe that  the robustness in  these variables is  rela-

tively low  compared with the robustness of the tracking variables

(correlation and standard deviation ratio). However, an important

aspect is  that the in-sample trend is captured in  the out-of-sample

period for high values of  �3 (more than 2). Fig.  19 is related to  the
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beta of the tracking portfolios. We generally observe similar in-

sample and out-of-sample performance of  ˇ  for low values of �3.

For other values of �3, we observe a reduction of   ̌ to  a level of

approximately 0.95. This reduction is expected since  the values of  �

have been reduced while maintaining a very stable ratio of standard

deviations.

In general, in  the out-of-sample period,  stocks  with high mar-

ket  capitalization had good  performance. This fact generated a
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positive effect for  policies  that relied mostly on large values of ymkt

and low  vales of  the other characteristics; in  general, this occurs

for low values of �3. This excessive dependence can be  avoided

with the selection of �3 to  produce more diversified portfolios

in terms of characteristics. Moreover, notice that  the higher mar-

ket  capitalization performance mostly  affected the excess returns,

the probability of  beating the index, and alpha,  i.e., the out-

performance variables. The correlation coefficient, ratio of standard

deviation, and beta were  robust out of sample.

Recall that  in  this application, we  are  implicitly considering daily

rebalancing to  the “new” optimal portfolio weights. The in-sample

and out-of-sample average turnover is shown in Fig. 20.  We  can

observe  that  both  turnovers are similar; but, the  turnover of the in-

sample period tends to  be  smaller than that of the out-of-sample

period, especially for high values of �3. The  turnover increases with

�3 since more aggressive portfolio policies generally involve high

turnover. For small values of �3, our tracking portfolio is  mostly

composed with large-cap  stocks. Since market capitalization is  a

stable characteristic, its  behavior in the cross-section is generally

maintained through time.  Therefore, the turnover of such portfo-

lio policies tends to be  low. Contrarily, alpha and beta deviation are

less  stable in  time and consequently in  the cross-section, producing
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high levels of turnover. In general, low levels of turnover corre-

spond to  including stocks with stable characteristics over time.

7.4. Transaction costs

In this  section, we implement the parametric approach includ-

ing transaction costs. We only consider the full rebalancing strategy

described in Section 5.2. We assume equal transaction costs for all

assets  and dates, i.e., ıi,t = ı  for all  i and t. Considering the param-

eters for transaction costs in Brandt et al. (2009),  Canakgoz and

Beasley (2008) and Gaivoronski et al. (2005), we  consider two

cases: ı =  0.1% and ı = 0.2% (notice that the case  without the inclu-

sion of transaction costs corresponds to  having ı = 0.0%). First, we

study the in-sample behavior of the optimal characteristics and

the other variables as a  function of  ı then, we analyze and com-

pare the in-sample and out-of-sample performance of the tracking

portfolios. Since  the results obtained are similar for the values of K
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considered in the previous section, we restrict the results by  consid-

ering only the case  of K = 50.  The  numerical results are  contained in

Tables 5 and 6.

7.4.1. In-sample performance with transaction costs

Fig. 21 is analogous to Fig. 7  but  for  different values of ı (in

particular ı  = 0.1% and ı =  0.2%). We observe a  similar pattern in

all  the plots,  with the  difference that  the �3 for which �˛ and �ˇ

start to become more significant (values generally greater than 1)

is  an increasing function of ı  Therefore, the presence of  transac-

tion  costs makes the strategy of  holding high market capitalization

stocks more dominant  since  that policy generates low turnover. To

clarify this point further, Fig. 22 shows the optimal  values of �mkt,

�˛ and �ˇ obtained with  different values of ı  as a  function of  �3.

Table 5

Results in-sample and out-of-sample for �1 =  1 with ı  = 0.1% and  K =  50.

�3 �mkt �˛ �ˇ Obj. � SD.R. Ret.  (%/y) Prob. (%) �  (%/y)   ̌ T (%/d) wmax (%) wmin (%)

In-sample

0  4.741 0.296 −0.019 0.981  0.981 1.006 −1.99 45.97  −1.82 0.987 0.54  3.34 1.36

0.5 4.907 0.185 0.815 0.977  0.981 1.022  −1.90 47.58  −1.94 1.003 1.12 3.45 1.36

0.75  4.833 0.574 1.093 0.976  0.979 1.022  −1.00 49.19  −1.03 1.002 1.63 3.47 1.37

1  5.036 0.911 0.982  0.976  0.979 1.029  −0.87  48.39  −0.96  1.008 1.86 3.45 1.37

1.0625  4.929 1.125 0.821  0.975  0.978 1.036  −0.65  47.58  −0.83  1.013 2.17 3.44 1.37

1.125  5.071 1.161 0.875  0.975  0.978 1.037  −0.78  48.39  −0.96  1.014 2.16 3.44 1.37

1.1875 4.982 1.071 0.946  0.978  0.979 1.035  −0.26  47.58  −0.42  1.012 2.10 3.45 1.37

1.25  5.089 1.232 0.857  0.978  0.978 1.037  −0.09 50.00 −0.28  1.015 2.31 3.44 1.37

1.375  5.054 1.946 0.250 0.981  0.981 1.048  0.81 48.39  0.51 1.023 3.25 3.48 1.37

1.5  5.000 2.554 −0.304 0.982  0.982 1.047  1.45  49.19  1.20 1.018 4.24 3.57 1.35

2  4.607 4.321 −2.071 0.996  0.996 1.045  4.39  49.19  4.32 1.005 7.40 4.04 1.32

3  4.232 4.982 −2.732  1.012 1.012 1.036  4.85  55.65  4.99 0.990 8.70 4.21 1.33

4  4.036 5.089 −2.875  1.016 1.016 1.036  4.05  55.65  4.22 0.987 9.09 4.25 1.33

5  3.964 5.125 −2.911  1.035 1.035 1.037  4.23  57.26  4.40 0.988 9.06 4.26 1.33

Out-of-sample

0  4.741 0.296 −0.019 0.981  0.981 1.004 4.82  61.90 5.52 0.985 0.69  3.30 1.34

0.5  4.907 0.185 0.815  0.992  0.983 1.025  4.45  59.52  4.11 1.007 0.90 3.28 1.38

0.75  4.833 0.574 1.093 0.996  0.983 1.014  4.43  61.90 4.57 0.997 1.86 3.23 1.40

1  5.036 0.911 0.982  0.996  0.981 1.012  3.84  59.52  4.20 0.992 2.12 3.20 1.41

1.0625  4.929 1.125 0.821  0.994  0.977 1.016  4.02  57.14  4.35 0.993 2.70 3.19 1.41

1.125  5.071 1.161 0.875  0.996  0.978 1.016  4.24  57.14  4.57 0.993 2.79 3.19 1.41

1.1875 4.982 1.071 0.946  0.999  0.978 1.010 4.55  57.14  5.12 0.988 2.67 3.19 1.41

1.25  5.089 1.232 0.857  0.995  0.975 1.013  4.06  56.38  4.64 0.988 2.97 3.19 1.42

1.375  5.054 1.946 0.250 0.989  0.970 1.008 3.60  59.52  4.64 0.978 3.65 3.22 1.39

1.5  5.000 2.554 −0.304 0.992  0.971 1.001 3.71  54.76  5.03 0.972 4.71 3.31 1.37

2  4.607 4.321 −2.071 0.985  0.955 1.009 3.91  54.76  5.65 0.963 8.12 3.72 1.38

3  4.232 4.982 −2.732  0.982  0.940 1.018  3.59  53.34  5.63 0.957 9.88 3.89 1.39

4  4.036 5.089 −2.875  0.996  0.940 1.034  3.61  54.76  4.94 0.972 10.15  3.93 1.39

5  3.964 5.125 −2.911  1.012 0.938 1.036  3.82  52.38  5.15 0.972 10.16  3.94 1.39

Own elaboration.



L. Chavez-Bedoya, J.R. Birge / Journal of Economics,  Finance and Administrative Science  19 (2014)  19–44 39

Table  6

Results in-sample and  out-of-sample for �1 = 1 with ı  =  0.2%  and K = 50.

�3 �mkt �˛ �ˇ Obj.  �  SD.R. Ret. (%/y) Prob. (%)  ˛  (%/y) ˇ  T  (%/d) wmax (%)  wmin (%)

In-sample

0 4.786 0.286 −0.018 0.981 0.981 1.004 −1.84 46.77  −1.64 0.985 0.55  3.34 1.36

0.5  4.839 0.071 0.732  0.977 0.980 1.021 −1.52 48.39  −1.52 1.001 0.83  3.44 1.36

0.75  4.911 0.018 1.054 0.975 0.978 1.020 −0.75 45.97  −0.75  1.000 1.22 3.47 1.37

1  4.929 0.143  1.411 0.975 0.978 1.016 −0.76 46.77  −0.72  0.997 1.69 3.49 1.38

1.0625 4.932 0.153  1.402 0.975 0.978 1.016 −0.76 46.77  −0.72  0.997 1.69 3.49 1.38

1.125  4.946 0.214  1.393 0.974 0.979 1.021 −1.02 45.16  −1.03  1.001 1.69 3.49 1.38

1.1875  4.946 0.196  1.464 0.977 0.980 1.021 −0.71 46.18  −0.72  1.001 1.73 3.50 1.38

1.25 4.948 0.179 1.518 0.976 0.980 1.018 −0.70 47.58  −0.67  0.997 1.73 3.50 1.38

1.375  5.000 0.180 1.496 0.975 0.980 1.018 −0.32 48.45  −0.29  0.997 1.73 3.50 1.38

1.5  5.045 0.268  1.536 0.975 0.979 1.018 0.30 49.99  0.34  0.997 1.73 3.50 1.38

2  5.071 0.857  1.196 0.977 0.979 1.031 2.00 51.61  1.87 1.009 1.82 3.47 1.38

3  4.911 2.679 −0.393 0.985 0.972 1.047 2.48 52.37  2.24 1.018  4.51 3.59 1.32

4  4.750 3.661 −1.321 0.996 0.965 1.048 2.78 54.39  2.52 1.019  6.30 3.85 1.32

5  4.554 4.143 −1.821 1.007 0.962 1.049 2.80 56.28  2.63 1.012  7.22 3.99 1.32

Out-of-sample

0  4.786 0.286  −0.018 0.981 0.981 1.006 3.74 59.52  4.35 0.987 0.66  3.30 1.34

0.5 4.839 0.071 0.732 0.987 0.983 1.022 2.36 55.95  2.17 1.004 1.12 3.30 1.37

0.75  4.911 0.018 1.054 0.990 0.983 1.023 2.22 55.78  1.94 1.006 1.19 3.29 1.39

1  4.929 0.143  1.411 0.996 0.984 1.024 3.01 52.38  2.66 1.008 1.62 3.26 1.41

1.0625 4.932 0.153  1.402 0.996 0.984 1.024 3.01 52.38  2.66 1.008 1.62 3.26 1.41

1.125  4.946 0.214  1.393 0.996 0.985 1.025 2.46 52.38  2.03  1.009 1.65 3.25 1.41

1.1875  4.946 0.196  1.464 0.997 0.985 1.027 2.55 54.76  2.03  1.011  1.72 3.25 1.41

1.25  4.948 0.179  1.518 0.996 0.985 1.024 2.26 54.76  1.88 1.008 1.75 3.25 1.40

1.375 5.000 0.180 1.496 0.997 0.985 1.024 2.26 54.76  1.88 1.008 1.75 3.25 1.40

1.5  5.045 0.268  1.536 1.007 0.985 1.017 3.88 57.14  3.83 1.001 1.84 3.24 1.40

2  5.071 0.857  1.196 1.013 0.979 1.020 4.40 52.38  4.46 0.999 2.16 3.20 1.41

3  4.911 2.679 −0.393 1.009 0.970 1.001 3.36 52.38  4.70  0.971 5.03 3.33 1.38

4  4.750 3.661 −1.321 1.018 0.962 1.015 3.65 53.78  4.76 0.976 7.16 3.54 1.37

5  4.554 4.143 −1.821 1.037 0.955 1.008 4.24 52.38  6.02  0.962 7.97 3.69 1.37

Own elaboration.

We can observe from the left plot that, in  general, as ı  increases,

�mkt also increases. From the central plot, we can observe a similar

behavior for  �˛ (increasing as  �3 increases) but the aggressive-

ness of the positions in  �˛ decreases in ı. In  the case of �ˇ, we

again observe similar patterns, with the difference that for moder-

ate values of �3 the strategies become more  dependent on stocks

with positive �ˇ(selecting stocks with beta moderately different

than 1)  to  achieve a  certain level  of return due to  the lower turnover

generated by �ˇ(compared with �˛).  For high values  of  �3 and as ı
increases, the strategy become less  dependent on including stocks

with beta close to 1 (small �ˇ) since  the position in  �˛ is  not as

aggressive as in the case of zero transaction costs.

Fig. 23 shows the  in-sample behavior of the objective, �, and

the average annualized return as a  function of �3 and ı. The main

observation to  notice is that for  ı =  0.2% the maximization of  the

objective is achieved mostly by the maximization of �, which is
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considerably larger (for �3 greater than 1)  than in  the cases of

ı  = 0.0% and ı = 0.1%.  Fig. 24 presents the same information but for

the ratio of standard  deviations, beta, and average turnover. We

observe that  the ratio is  consistently greater than one but the  beta of

the portfolio moves approximately between 0.985 and 1.02.  Notice

that for low values of �3,  the portfolio beta for  ı = 0.2% fluctuates

around one due  to  the stability of the ratio of standard deviations.

In  general, the riskiness of  the portfolios is  compensated by the
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decrease in �  to  obtain portfolios with beta  close to one.  We  can

observe that  because of transactions costs, the portfolios incur less

turnovers. The average turnover for ı = 0.2% (especially for  medium

to large values of  �3)  is significantly lower than that of ı  = 0.0% and

ı = 0.1%.

Finally,  notice that  the portfolios with  close to zero excess

return over the index were obtained  for �3 between 1.25 and

1.375 for  ı =  0.1%  and between  1.375 and 1.5  for  ı =  0.2%. For the

case of  zero  transaction costs, the range of �3 was  between 0.75

and 1.  More transaction costs then imply giving more weight to
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Fig. 25.  In-sample and out-of-sample objective (as a  function of �3) for  ı = 0.1% (left), ı  =  0.2%  (right), �1 =  1 and  K =  50.
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out-performance in  the objective to find a tracking portfolio with

excess return close to  zero.

7.4.2. Out-of-sample performance with  transaction costs

In-sample and out-of-sample profiles for ı = 0.1% and ı = 0.2%

corresponding to  the optimal objective function value are relatively

different as  shown in  Fig.  25. This difference can be explained by

the performance of the correlation coefficient and the excess  return

over the index that  can be  seen in  Figs. 26 and 27,  respectively.

Remember that in the case of no  transaction costs the tracking

component was more  robust than the enhanced component. In the

presence of transaction costs, we  observe  the same behavior; there-

fore, the good out-of-sample performance for ı  = 0.2%  is justified

mostly by its reliance on the correlation coefficient (having greater

values of �  compared with the other cases). In  the case of  the excess

returns, good performance for  low values of �3 can be explained by

the  excellent returns  obtained by the stocks with higher market

capitalization during the testing period,  which cannot be general-

ized for  other periods.

From Tables 5  and 6,  we  can observe that out-of-sample values

for  the  ratio  of standard deviations are  well below the 1.05  limit.

Consequently, the variance  of  the tracking portfolios (relative to the
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one of  the index) is  preserved during the testing period even in the

case of aggressive allocations in  �˛.  Moreover, Fig. 28 shows the in-

sample and out-of-sample betas that  are maintained in the range

0.96–1.02. Notice that  the tendency out-of-sample is  to  produce

values of beta slightly smaller than one  due to  the presence of stocks

with higher ymkt.  The turnover of the portfolios almost presents no

difference in-sample and out-of-sample, which  is important since

it is  closely related to  the stability of  the characteristics over time.

The aforementioned fact is shown in  Fig.  29. Finally, the average

maximum and minimum portfolio weights remain stable, avoiding

increasing  aggressive allocations with the increment of �3.

8. Conclusions and final remarks

We  have developed a parametric approach for index tracking

and  enhanced indexation that  has advantages over existing models.

First,  the parametric model optimizes over stock’s characteristics

(that can be seen  as strategies) and not over portfolio weights.

The  portfolio  weights are  the result of the chosen strategy, giv-

ing a  qualitative idea of  the portfolio composition. Second, this

approach reduces the dimensionality of  the optimization problem

compared with mixed-integer programming methods. Nonethe-

less, a  low-dimensional, unconstrained non-linear optimization
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problem needs to be solved. Third, the  proposed objective func-

tion summarizes typical objective functions in  the index tracking

and  enhanced indexation literature.

By maximizing an objective including the correlation coeffi-

cient (between the portfolio and the index) minus the ratio of

standard deviations (portfolio with respect to the index) plus an

out-performance measure (typically the excess return of the port-

folio over the index), we can control the importance given to the

tracking objective (correlation plus standard deviation) and the

enhanced objective. By design, the tracking portfolios under the

parametric approach try  to achieve a beta of one with respect to  the

index and to minimize the variance of the tracking error  simulta-

neously. Other  models consider only one of these variables, leaving

the other free. Also, our objective correctly separates the tracking

objective from the enhanced component, giving more  freedom to

the modeler to  decide on particular weights given to  each part of

the objective.

The selection of appropriate stock characteristics in the para-

metric model is  a delicate issue. We  have proposed the use of

similarity measures of the stocks  with the index as characteris-

tics, plus others that  explain the cross section of asset  returns.

Although we did  not evaluate all  possible characteristics to use,

market capitalization, alpha and beta produced in-sample and out-

of-sample results that  are  in  line with economic intuition. Holding

stocks with high market  capitalization resulted in  constructing

portfolios with high correlation coefficient with an index that  is

cap-weighted as is the S&P500. Alpha, on  the  other hand, was used

to  obtain higher levels of excess returns over the index, while stocks

with beta close to one were useful to keep the ratio  of standard

deviations close to one.

The out-of-sample performance showed that the correlation

coefficient and the ratio of standard deviations have a  robust behav-

ior, i.e., the in-sample and out-of-sample performances were very

close to  each  other. However, the out-performance part  was  less

robust. This fact is  expected since many empirical studies have

shown that  forecasting the correlation and standard deviations

is more  accurate than forecasting expected returns. However, we

were able to  capture some  out-of-sample momentum with the

inclusion of alpha as a characteristic. Additionally, our results

showed that the only way to  extract more  excess returns while

keeping the standard deviations close to  each other  is by a  reduction

in  the correlation coefficient with  the index. Also, more aggressive

strategies (in the sense  of trying to  achieve greater excess  returns

over the index) involve higher levels of turnover since the cross

sectional behavior of  the characteristics that  collaborate with the

out-performance component are  more volatile than those involved

in tracking-only purposes.

The main problem of our approach (with the set  of charac-

teristics and the particular example we  have chosen) is that the

tracking-only strategies rely very strongly on positions in  stocks

with high market capitalization (relative to  the others in  the index).

Therefore, the portfolio is exposed  to  the performance of this par-

ticular group of stocks. In some cases, that  strategy can be profitable

(as in our case) and in  other cases not. It is then recommended to

choose strategies that mix  different types of assets to  avoid exces-

sive exposure to  a  particular sector or  group  of  stocks. This can be

controlled by the trade-off parameters in the objective function  or

by  including more characteristics.

Finally, we mention additional research that  can be done  with

respect to the  parametric model for index tracking and enhanced

indexation. For  example, the implementation of the more sophisti-

cated transaction costs policies described in the paper, the analysis

of performance of  the parametric model under  other choices of

characteristics, trading frequencies, time horizons and indices (e.g.,

it  could be of interest to  see if market capitalization continues to be

important  to track other types of indices that are  not market-cap

weighted), the use of  multiple disjoint in-sample (calibration) and

out-of-sample periods, and the elaboration of an empirical com-

parison of  the parametric approach with other  widely recognized

models in  the literature.
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