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1. Introduction

All kinds of exotic options arise one after another in the 

environment of volatile financial market. Asian power options are 

successful. They have become widely used in the fields of stock, 

commodity, energy and foreign exchange. Kemna and Vorst (1990) 
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A B S T R A C T

A framework for pricing Asian power options is developed when the underlying asset follows a jump-

fraction process. The partial differential equation (PDE) in the fractional environment with jump is cons-

tructed for such option using general Itô’s lemma and self-financing dynamic strategy. With the boundary 

condition, an analytic formula for the option with geometric average starting at any time before maturity 

is derived by solving the PDE, and the option with arithmetic average is evaluated in Monte Carlo simula-

tion using control variate technique with the help of the above analytic solution. Overwhelming numerical 

evidence indicates that the technique proposed is computationally efficient and dramatically improves the 

accuracy of the simulated price. Moreover, this study will pave a novel way to copy with the option con-

tracts based on thinly-traded assets like oil, or currencies or interest rates.
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Tasar las opciones energéticas de Asia por el método de fracciones discontinuas

R E S U M E N

Se desarrolla un marco para tasar las opciones energéticas asiáticas sometiendo el valor del activo 

subyacente a un método de fracciones discontinuas. La ecuación en derivadas parciales (EDP) en el entorno 

fraccional con salto se construye para una opción dada utilizando la fórmula general de Itô y una estrategia 

dinámica de autofinanciación. Con la condición límite, resolviendo la EDP se deriva una fórmula analítica 

para la opción con una media geométrica que empieza en cualquier momento antes de la madurez, y la 

opción con media aritmética se evalúa con simulación de Monte Carlo utilizando variables de control 

apoyadas en la citada solución analítica. Hay abrumadora evidencia numérica de que la técnica propuesta 

es eficiente en tiempo de cálculo y mejora espectacularmente la precisión del precio simulado. Es más, este 

estudio abrirá un nuevo camino que seguir en los contratos de opción de compra basados en bienes tan 

poco negociables como el petróleo, las divisas o los tipos de interés.
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proposed an analytic expression for Asian options with geometric 

average using the partial differential equation (PDE) approach, on 

this basis, geometric average as control variable employed in the 

Monte Carlo simulation method (Boyle, 1977) was used to obtain 

satisfactory result for pricing Asian options with arithmetic 

average. Chen and Lyuu (2007) came up with a close-form solution 

for arithmetic Asian option using the approximation of arithmetic 

average through geometric average appeared. The approximate 

approach works as well as the Monte Carlo simulation approach 
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but accuracy remains problematic for high volatility and/or long 

maturity cases. In addition, lattice binomial method (Hull & White, 

1993; Neave & Turnbull, 1993) has been proposed to handle Asian 

options. But it has a dramatic computational cost because a large 

number of possible realizations of the payoff must be considered. 

Among the above most common methods to price Asian options, 

Monte Carlo method is rather simple to implement and can provide 

standard errors for the estimates to measure quality, and it further 

achieves a satisfactory level of accuracy with the enhancement of 

control variate technique for more complex arithmetic average 

option (see Boyle et al, 1997). At the same time, the analytic 

solut ion of the Asian opt ion with geometr ic averaging is 

indispensable in the control variate technique and PDE approach 

(Alziary et al., 1997; Zhang, 2001) provides an accurate result for 

geometric average option without computationally expensive 

when the PDE to be solved has three or four independent variables. 

As far as power option is concerned, Blenman and Clark (2005) 

explicitly solve for the price of the power option to exchange one 

asset for another under the equivalent martingale measure in 

which they specified that the price of power call is equal to the 

price of the power exchange option when the power of another 

asset is zero. 

Most of the academic researches on such exotic options assume 

that the underlying asset evolves as a continuous diffusion process. 

This implies that logarithmic returns of the asset are normal random 

variables. However, empirical evidences in Jorion (1988), Bates 

(1996), Pan (2002), Chernov et al. (2003), and Eraker (2004) indicate 

the presence of discontinuous jump in asset price when significant 

new information or catastrophic events arise. The jump-diffusion 

process is widely used to model jumps of the price movement and 

was introduced to option evaluation by Merton (1976) and Gukhal 

(2004). In recent years, many empirical studies on capital market 

also show that the logarithmic returns on financial assets are not 

normally distributed but the distribution with excess kurtosis and 

fat tail. Moreover, price series on financial assets are not stochastic 

motion but long-range dependence. Peters (1989) found the fractal 

structure and non recurrent phenomenon in both stock and 

exchange rate market and proposed the hypothesis of fractional 

market. Fractional Brownian motion, as a family of Gaussian 

processes, can give a satisfactory description of the price dynamics 

of the underlying asset because it has two important properties of 

self-similarity and long-range dependence. Considering fractional 

Brownian motion is neither a Markov process nor a semi martingale, 

Duncan et al. (2000) built up the fractional-Itô-integral to analyze it. 

Furthermore, Hu (2003) proofed that the option market under the 

fractional Brownian motion is perfect without arbitrage opportunity 

using the Wick integration and gave European option pricing 

formula at arbitrary time. Indeed, some authors have used the 

fractional Brownian motion to capture the behavior of underlying 

asset and to obtain fractional Black-Scholes formulae for pricing 

options including Necula (2002), Bayraktar et al. (2004) and Meng 

and Wang (2010).

To better describe the evolution of asset price, the combination of 

Poisson jumps and fractional Wiener process is introduced in this 

paper. The jump fractional process is consistent with an efficient 

market where major information arrives infrequently and randomly. 

In addition, this process is capable of capturing the empirically 

observed distributions of asset price changes that are leptokurtic, 

skewed, long memory and have fatter tails than comparable normal 

distributions, and provides a good explanation for volatility smile 

effect of log normally based Black-Scholes model. That is, the implied 

volatility varies with moneyness and maturity.

The problem of pricing option when the underlying asset value is 

driven by a jump fractional process was solved by Xiao et al. (2010) 

who derived a pricing model for currency option value. Things are 

more complicated in the case of exotic path-dependent option such 

as Asian power options developed in this paper whose payoff 

depends on the geometric or arithmetic average of the underlying 

asset raised to power. Such option represents a simultaneous 

generalization of Asian options as well as power option both of 

which play an important role in the risk management and incentive 

contract (see Zhang, 1997, Tompkins, 1999). The average feature 

embedded in power option makes Asian power option less subject to 

price manipulation thus hedging nonlinear risk arising in option 

positions from changing level of implied volatility and smoothing 

randomness inherent in the stock price so that the managers can be 

evaluated more fundamentally in the incentive contract for indexed 

executive option compensation. Despite many literatures on Asian 

option, there is litter work on Asian power option.

The objective of this paper is to study the pricing of Asian power 

options with geometric and arithmetic. Meanwhile we capture the 

behavior of the underlying asset using the jump-fraction process 

and follow the control variate technique whose chief advantage is its 

high accuracy and efficiency. The outline of the rest of the paper is as 

follows: The next section derives the analytical formula for the 

Asian power options with geometric average using PDE approach 

after giving the assumption of pricing environment. Section III 

demonstrates how the analytical solution as control variable is 

implemented in the Monte Carlo simulation to obtain an accurately 

simulated price of the Asian power option with arithmetic average. 

Conclusions are presented in the final section.

2. The valuation model

Consider a complex and f lexible f inancial economy where 

information arrives both continuously and discontinuously. This is 

modeled as a continuous component with the features of 

“asymmetric leptokurtic” and “long memory” and as a discontinuous 

component with abnormal fluctuation in the price process. Assume 

that the asset pay dividends, the price process can hence be specified 

as a superposition of these two components and can be represented 

as;

 (1)

where m t and q t are time-dependent parameter respectively 

denoting expected yield rate and dividend rate. s is volatility; Bt 
H  

is a fractional Brownian motion with Hurst parameter H∈(0, 1) 

which is Centered Gaussian process with mean zero and covariance 

 ; Qt is a Poisson process with intensity l, 

dependent of Bt 
H, Nt is Poisson compensation process and equals 

Qt–lt.

Theorem 1 Set Wt=Bt
H + Nt, ƒ(t,f) ∈ C1,2 (R

+
 × R → R) and ƒ(t,Wt), 

 , , and   belonging to 

L2(P), then

f (t,Wt) = f(0,0) +  (2)

Proof: See Appendix A

Theorem 2: The solution of the stochastic differential equation (1) 

equals

 (3)

Proof: Let

, then dSt = df(t,Wt), 

the theorem can be proven from Theorem 1.
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Theorem 3: Consider an Asian power option with contingent 

claim process V(St, It) ∈ C1,2 (R
+
 × R → R) , written on the risk asset 

following (1), the partial differential equation in the jump fractional 

environment is

 (4)

Proof: Since Asian power option is path-dependent option whose 

price is related to path factor besides time and the underlying asset. 

We introduce a new variable , a >1.

Let the option price at t (0 ≤ t ≤ T) be V (St It, t) the option value is 

path-dependent on It but it is fundamentally driven by the original 

underlying assets in (1), whose dynamics is derived by applying 

Lemma 1 and Lemma 2.

We replicate the option by constructing the hedging asset 

portfolio composed of the risk asset St. And bond Bt with riskless 

interest rate r ut
0 and ut

1 represents the position of risk asset and 

riskless asset held in the portfolio, then the wealth process 

V = ut
0Bt + ut

0St. Using self-financing dynamic trading strategy:

dV = ut
0rtBtd t + ut

1dSt + qtut
1St dt

Consequently we can obtain the result of Theorem 3.

3. An analytic formula for Asian Power Option with geometric 

average

Because the geometric average of a so assumed variable remains 

in the family of the Itô process, we price a European-style Asian 

power option on geometric average with maturity T and strike price 

K by solving the partial differential equation (4).

Given the boundary conditions of call option 

V(ST, IT, K,T)=max(IT −K,0) (5)

we apply the following transformation:

 (6)

V(St, It, t) = F(x,t) (7)

to equation (4) and (5) to yield

 (8)

F(x,T) = max(ex – K,0) (9)

where equation (8) after an appropriate change of variables, becomes 

a classical heat equation (see, e. g., Daly & Logan, 1998). Further, we 

apply the following transformation

 (10)

and

 (11)

 (12)

to equation (8) and (9) to obtain

 (13)

 (14)

The solution to equations (13) and (14), which has been verified 

by us using Green’s function approach, takes the following form

 (15)

where: N(–) is the cdf of a standard normal distribution.

Thus the solution to equations (4)−(5) can be written as

 (16)

where the function U(y, z) is given by (15), with

By doing some algebra, the solution to our problem (4)−(5) can be 

further written in the following result:

Proposition 1. The analytic pricing formula of a geometric Asian 

power call option with maturity T and strike K , path factor I t , power 

a, written on an asset following Eq. (1) is given from the solution to 

equation (4)−(5), i.e.

 (17)

where
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The above result can be extended to a forward-start-averaging 

Asian power option on geometric average price, we use time 

notations as follows: 0 = start of the option; t = option valuation 

date; T0 = start of the averaging; and T = maturity of the option or the 

end of the averaging. We assume 0 ≤ t ≤ T0 < T, with the forward-

start-averaging taken over [T0, T]. The approach is to determine 

option price at T0 and evaluate it discounted expectations at t by 

integration, the final result is stated below (see Appendix B for the 

derivation):

Corollary 1: The analytic pricing formula for the forward-

start-averaging call option for geometric Asian power starting at T0, 

and expiring at T, with strike price K, power a, written on an asset 

following Eq. (1), is

 (18)

where

  

The put case can be derived in the same way as proposition 1. 

On the basis of boundary conditions P(ST, IT, K,T)=max(K − IT,0), we 

solve equation (4) and obtain the price of Asian power put option 

P(St, It, t).

Proposition 2. Geometric Asian power put option with maturity 

T and strike K, path factor I t, power a, written on an asset following 

Eq. (1) whose analytic solution is given by

 (19)

where St*, It, r*, sl*, sH* are as defined as proposition 1.

Expression for the case of forward-start-averaging put option can 

also be derived in a similar manner. Thus, the price of such option is 

presented as follows:

Corollary 2: The analytic pricing formula for the forward-

start-averaging put option for geometric Asian power starting at T0, 

and expiring at T, with strike price K, power a, written on an asset 

following Eq. (1), is

 (20)

where St*, It, r*, sl*, sH* are as defined as Corollary 1.

It is straightforward to verify that familiar pricing formulas 

obtain as special cases of (17)-(19). For example, for H=0.5, a=1, 

(17)-(19) reduce to the familiar jump-diffusion formula for the price 

of geometric Asian call and put options with fixed strike price K. 

Moreover, when l=0, parameter q and r is constant, (17) and (19) 

simplify to the standard Asian option with geometric average on 

assets driven by geometric Brownian motion which is consistent 

with the result from Kemna and Vorst (1990).

4. Simulated price of Asian power option with arithmetic 
average

The pricing of European path-dependent option can always be 

implemented using the simple and efficient Monte Carlo simulation. 

The approach becomes the last resort especially when there is no 

analytical formula available for the pricing of Asian power option 

with arithmetic average because the arithmetic average of so-called 

assets does not remain in the family of the Itô process. One important 

issue in implementing the simulation method is the accuracy of the 

calculated option price which is measured by sample variance, 

and the relationship between them is negative; that is, the accuracy 

of the option increases as the variance decreases. The number of 

simulation runs depends on the accuracy. In general, the accura-

te simulated price can be obtained only by large number of 

simulation runs without adjusting the sampling method. To reduce 

the variance and achieve high accuracy of the simulation results 

for arithmetic Asian power option within a feasible number of 

simulation runs, the implementation of a control variate technique 

in the Monte Carlo simulation approach is necessary.

The control variate must be the financial derivative with positive 

relationship of the simulated derivative and derived analytical 

solution. The geometric average can serve not only as a lower bound 

for the arithmetic average but also as a control variate in the 

simulation approach. Thus, the analytical formula in proposition 1 

and proposition 2 with geometric average becomes indispensable in 

the simulation approach to pricing of the options with arithmetic 

average because the formula plays an integrated part in the control 

variate technique. 

We focus on the price at the inception (t=0, denoted by AV(S0, K, 0, 

T) of a European style call Asian power option of arithmetic average 

with maturity T in the simulation that follows. The arithmetic mean 

over [0,T] is simply 

 (21)

To implement the simulation, we take the discrete approximation 

of A defined as follows:

 (22)

where Tj=j×(T/n) with T0=0, Tn=T and j =1,2,…..,n.

Following the risk-neutral valuation argument by Cox and Ross 

(1976), the price of a European style call Asian power option of 

arithmetic average can generally be expressed as follows:

 (23)

where EQ is the expectation in the risk-neutral world (see Harrison & 

Kreps, 1979; Harrison & Pliska, 1981).

Assume the current time be T0 and the terminal time be Tn=T, then 

the sampling interval observed twice is DT= (Tn–T0)/n thus Tj=T0+j×DT 

for j = 1,2,…,n. 

+

+
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Let R(Tj)=ln[Sa(Tj)/S
a(Tj–1)], from theorem 2, we have

 (24)

Under the risk-neutral probability measure, we can replace 

the drift coeff icient m by the instantaneous r iskless rate r, 

a n d  h e n c e  R ( T j)  i s  n o r m a l l y  d i s t r i b u t e d  w i t h  m e a n s 

 , variances . 

Thus, the random sequence Sa(T1), Sa(T2),…., Sa(Tn) can be generated 

by the following processes:

 (25)

where kj is driven by a standard normal distribution. As a result, k1, 

k 2,….., kn consist of one dimensional sequence of independent 

drawings from the standard normal distribution.

We implement a total of M simulation runs. For every run, a 

realization of a one-dimensional sequence can be obtained and 

a single simulated option price can be calculated as follows,

 (26)

The simulation estimate of the option price E[X(T)] in (23) is 

simply the expected value of X(T) over M runs which is denoted as

 (27)

and the variance of X(T) is denoted as

 (28)

Certainly, derivative houses would like to provide prices of their 

derivative products that are as fair as possible in volatile market. 

Fortunately, a more accurate simulation estimate can be achieved 

by using the control variate technique. In order to implement the 

control variate technique to CAV(S, K,0,T), there should be available 

a random variable Y(T), which is driven by the same random 

sequence Sa(T1), Sa(T2),….,Sa(Tn) as for X(T) in Eq. (26) and is a close 

approximation of X(T) but has an analytical expression for its 

expected value, E[Y(T)]. Therefore, we choose the following random 

variable as the control variable:

 (29)

where G is defined as the following discrete approximation:

 (30)

It is easy to notice that E[Y(T)] is the expected price of Asian 

power call with geometric average and its analytical solution is 

already given by proposition 1 and its simulation estimate of the 

option price E[Y(T)] is denoted as:

 (31)

We run the simulation to obtain the estimated value of 

E[X(T)-Y(T)]. Because X(T) and Y(T) are closely related random 

variables, the estimation errors of both X(T) and Y(T) that are 

bound to occur during the simulation should be very similar in a 

well-controlled simulation test. As a result, E[X(T)-Y(T)] incurs very 

small estimation errors. To obtain the call option price, we take the 

sum of the simulated result, E[X(T)-Y(T)], and the analytical value, 

E[Y(T)], from proposition 1. It is worth mentioning that there is an 

inevitable small bias between the continuous-time analytical 

value and the simulated value 
_
Y(T) of E[Y(T)] due to discrete 

sampling. Nevertheless, such a bias is much offset by a similar bias 

for E[X(T)] in simulated E[X(T)-Y(T)]. Thus, the estimated E[X(T)] 

using the control-variate technique is, strictly speaking, of 

continuous time-type and has reduced variance since it bears the 

same small estimation errors as E[X(T)-Y(T)] does. Therefore, 

the more accurate price of Asian power call option with arithmetic 

average is given by

CAV(S, K,0,T)=E[X(T)]=  (32)

The variance of X(T) with control variable Y(T) is computed by

 (33)

Where ŝ2 is the variance of stochastic variable X(T)-Y(T), the sum 

of simulation runs for s2 exceed the simulation runs for ŝ2 if ŝ2 = s2. 

That is, the accurate simulated price can be obtained by lower 

simulation runs with control variate technique than without control 

variate technique in the Monte Carlo approach. In conclusion, a more 

accurate simulation results can be achieved by using the control 

variable technique which improves the computational efficiency of 

the Monte Carlo approach.

The price of put option with the terminal payoff of max (K–A(T),0), 

can be obtained by the put counterpart of (32) and expressed as 

 follows:

PAV(S, K,0,T)=E[X′(T)]=[
_
X′(T) – 

_
Y′(T)] + P (34)

where 
_
X′(T) and 

_
Y′(T) are defined as (27) and (31) in which X(T) and 

Y(T) are respectively, replaced by X′(T) and Y′(T), and they are the 

case of (26) and (29); P is given by proposition 2.

Table 1 reports additional example for pricing arithmetic Asian 

power call option on underlying asset driven by jump fractional 

process by using control variate technique in the Monte Carlo 

simulation described above. The focus of this table is to examine 

the validity and accuracy of such technique for the exotic Asian 

option in the fractal jump environment. The option contract is 

initiated today and the average period is the full term to maturity. 

The asset current prices is 40 USD, time to maturity is four months 

or 1/3 year, dividend yield is 0.005 per annum, the parameter of 

Hurst exponent H and jump intensity l is estimated as 0.65 and 

0.5136 respectively using famous and simple R-S analysis 

methodology (see Peters, 1989) and cumulated imitated method 

(see Beckers, 1981), and the power a is 1/2, the time steps n is 88, 

the total of simulation runs is 10000, and other various numerical 

inputs such as risk-free rate r, instantaneous volatility s and strike 

price K mainly follows the literature (e.g. Kemna & Vorst, 1990). The 

forth column V is the analytical solution of Asian power call option 

with geometric average given by proposition 1. The fifth column 

displays 
_
X, the simulated price of Asian power option on arithmetic 

average with the Monte Carlo simulation and the sixth column s 

shows the standard error of simulated 
_
X; the seventh column CAV 

and eighth column s/ respectively represent the simulation estimate 

of Asian power option on arithmetic average and the standard 

error of simulated CAV with the control variate technique employed 

in the Monte Carlo simulation. The last two columns compare 

the analytical solution V with the simulated price CAV and show the 

standard error ŝ between them.

From the results in Table 1, it is evident that a more accuracy of 

the simulation result for Asian power option on arithmetic average 

within a feasible number of simulation runs can be achieved by 

using control variate technique in the Monte Carlo. It is evident that 
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standard error s/ of simulation estimate using geometric average 

price V as control variable is less than s without using control 

variable both in-the-money, out-of-the-money and at the money 

option. In view of time efficiency, control variate technique can 

improve the computational speed of the Monte Carlo approach. This 

is because we have to implement far more than 10000 simulation 

runs to achieve the accurate simulation estimate without using 

control variable; on the contrary, we can achieve the similar 

accurate simulated price only by 10000 simulation runs using 

control variable. The evidence of substantial control variable is 

over whelming. The accuracy of simulated price is high with large 

riskless rate and high volatility. For example, in Table 1, with the 

following set of inputs, s = 0.4, K=35USD, r= 0.03 and 0.05, 

the standard error of the estimated price drops to 0.001547 and 

0.001614 from 0.043085 and 0.044135 for the estimated price 

of the option without using the control variable; that is, the 

standard error reduces 53 and 54 times with using control variable. 

With the same set of above inputs but s=0.2, the standard error for 

the estimated price of the same option with control variable and 

without control variable is respectively 0.000355, 0.000402 

and 0.024259, 0.025972; thus, the standard error reduces 64 and 

65 times with using control variable technique. Furthermore, it is 

clear from Table 1 that the price of Asian power option with 

arithmetic average CAV always exceeds the option with geometric 

average V, and difference between them decreases as parameter K 

decreases from 35 to 45; however, difference between them 

gradually increases as volatility and riskless rate increase. It shows 

the estimated bias between geometric average and arithmetic 

average at discrete time is very low with small volatility and riskless 

rate. In other words, the difference between simulated price of 

Asian power option with arithmetic average and analytical solution 

for Asian power option with geometric average is very low. But the 

above estimated bias increases without using control variable 

technique, further the difference between simulated price with 

control variable technique for arithmetic Asian power option and 

analytical solution for geometric Asian power option increases. The 

estimated standard error of ŝ without using control variable 

technique is as same as s/ with using control variable technique, 

which examined the equation of (33).

In the following set of numerical experiment presented in Table 2, 

we compare the theoretical prices of arithmetic Asian power option 

on the underlying asset driven by the different dynamic process: 

jump-diffusion process (H=0.5, l=0.5136, hereafter J-D), fractional 

Brownian motion process (H=0.65 l=0, hereafter FBM), and our 

jump fractional process (H=0.65, l=0.5136, hereafter JFBM1 or 

l=6.25, hereafter JFBM2). The riskless rate r is 0.05 and instantaneous 

volatility s is 0.4.

By comparing columns J-D, FBM, JFBM1, and JFBM 2 in Table 2 for 

the maturity on 1/3 and 2 cases, we have the conclusion that the call 

option prices obtained by three valuation processes are close to each 

other. This is mainly because that the jump parameters are very low. 

Meanwhile, we can investigate that the prices given by the FBM are 

the smallest among another valuation process; apparently the prices 

obtained by the JFBM2 are largest among the price obtained by J-D, 

FBM and JFBM1. The main reason is that the call price is a decreasing 

function of Hurst exponent H and an increasing function of jump 

parameter l. Moreover, we investigate that the magnitude of the 

difference between option prices computed by these three valuation 

processes (J-D, FBM, JFBM2) increases in the high jump parameters 

cases as time to maturity increases, and the magnitude of the 

difference ratio in prices is higher for out-of-the-money options in 

the time to maturity case of T=2. We further find the prices obtained 

by different valuation processes is positive related to power a, when 

a=1, the standard arithmetic Asian option is obtained in the jump 

fractional process, which extends the result presented by Kemna 

and Vorst (1990).

5. Conclusions

One way for financial managers to mitigate financial distress 

costs is to use exotic derivatives, thus, risk management is closely 

Table 1

Pricing results of Asian power option under the jump-fraction process

s K V
_
X s CAV s/ CAV−V ŝ

r=0.03 0.2 35 5.017632 5.035502 0.024259 5.065995 0.000355 0.048363 0.000355
40 1.062326 1.048939 0.015694 1.074776 0.000358 0.01245 0.000358
45 0.033861 0.036987 0.003176 0.036541 0.000298 0.00268 0.000298

0.4 35 5.338798 5.378407 0.043085 5.406478 0.001547 0.06768 0.001547
40 2.093466 2.075383 0.032875 2.116426 0.001585 0.02296 0.001585
45 0.605341 0.622643 0.018453 0.612331 0.001586 0.00699 0.001586

r=0.05 0.2 35 5.113351 5.152631 0.025972 5.164421 0.000402 0.05107 0.000402
40 1.125681 1.173367 0.016795 1.140231 0.000401 0.01455 0.000401
45 0.034595 0.037792 0.003198 0.042745 0.000308 0.00815 0.000308

0.4 35 5.406175 5.415923 0.044135 5.483565 0.001614 0.07739 0.001614
40 2.143631 2.131265 0.034081 2.174781 0.001652 0.03115 0.001652
45 0.613368 0.590859 0.016893 0.633378 0.001513 0.02001 0.001513

Table 2

Comparison of arithmetic Asian power option among different dynamic process

Power a K Time to maturity, T=1/3, t=0 Time to maturity, T=2, t=0

J-D FBM JFBM1 JFBM2 J-D FBM JFBM1 JFBM2

1/2 35 5.562942 5.385347 5.433565 5.725482 8.19586 7.686874 7.790765 10.11685
40 2.230312 2.155984 2.174781 2.428634 5.143763 4.765934 4.896076  7.661433
45 0.749854 0.629659 0.633378 0.854321 3.214738 2.849832 3.098857  5.039127

1 35 5.838963 5.684593 5.703281 5.919863 8.464971 7.946875 8.017985 10.32176
40 2.594938 2.459854 2.476934 2.708945 5.415489 5.015431 5.175623  7.924365
45 0.904174 0.81329 0.880521 0.985487 3.520346 3.145933 3.387642  5.548921

3/2 35 6.179845 6.008753 6.098531 6.267908 8.788554 8.127695 8.245872 10.67532
40 3.10278 2.998675 3.019853 3,248752 5.74529 5.305648 5.414487  8.237612
45 1.147651 0.999887 1.007643 1.218435 3.799944 3.334465 3.524789  5.809439
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linked to exotic derivatives and has become increasingly important 

for modern corporations to provide great value-added potentials. 

This paper presents a new variety of financial derivatives that 

non-trivially bridge the Asian option and power option which play 

essential roles in financial market. The valuation of such option is an 

active area of research. Empirical evidence shows the presence of a 

jump component in addition to the fraction component in the 

evolution of asset prices. We study the control variate technique to 

the valuation of Asian power option with arithmetic average under 

the jump-fraction process. In particular, we extend the partial 

differential equation of Kemna et al. (1990) to jump-fraction process 

and derive the analytical pricing formula for the Asian power option 

with geometric average, which may start at any time before 

maturity. We then price the option with arithmetic average in 

conventional Monte Carlo simulations. The overwhelming numerical 

evidence demonstrated in the paper confirms that the control 

variate technique with help of analytical formula of the option with 

geometric average dramatically improves the accuracy of the 

simulated price and simulation efficiency. The accuracy of simulated 

estimate is high as large riskless rate and low volatility and the 

estimated results are always a little more than analytical solutions 

of Asian power option with geometric average. Furthermore, the 

numerical result is also provided to show that the power can adjust 

the option price to satisfy risk-hedging and jump fractional process 

will be more efficient for pricing Asian power options than jump 

diffusion process and fractional Wiener process when the time 

maturity and jump are large enough.
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Appendix A. Proof of the theorem 1

Setting t i as the jump time in the intervals [0, t] where i is the 

number of jump and Wt=Bt
H+Qt−lt. When i equal 1, using fractional 

Itô equation, we have

The change of f(t,Wt) at time t1 equals f(t1,Wt1)− f(t1,Wt1-) thus

 +

+ 

Consider the number of jumps in the intervals [0, t] follows the 

Poisson process, hence

 +

+ 

Say g(f) ∈ C2 (R → R), and it is fact that (dQt, dQt), using the general 

Itô equation in g(Qt), we have,

Note that Wt=Bt
H+ Qt−lt, hence 

Appendix B. Derivation of the pricing formula in corollary 1

Note that for 0 ≤ T0 ≤ t ≤ T, we can invoke the “plain vanilla” 

pricing formula of proposition 1.

We already know form proposition 1 that the option price at 

t=T0 is as follows:

 (15)

where

;  

Thus, the option price at t<T0 is simply the t-time value of a 

derivative with a terminal value at T0 determined by the above 

formulae, i.e.:

It follows that the option price can be obtained by solving the 

following integral

where N is the normally distributed density function. Through some 

tedious algebra, we have the forward-start-averaging option 

formula written as Corollary 1 in the paper.
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