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Abstract

Purpose –The purpose of this article is to propose a detailed methodology to estimate, model and incorporate
the non-constant volatility onto a numerical tree scheme, to evaluate a real option, using a quadrinomial
multiplicative recombination.
Design/methodology/approach – This article uses the multiplicative quadrinomial tree numerical method
with non-constant volatility, based on stochastic differential equations of the GARCH-diffusion type to value
real options when the volatility is stochastic.
Findings – Findings showed that in the proposed method with volatility tends to zero, the multiplicative
binomial traditional method is a particular case, and results are comparable between these methodologies, as
well as to the exact solution offered by the Black–Scholes model.
Originality/value –The originality of this paper lies in try tomodel the implicit (conditional)market volatility
to assess, based on that, a real option using a quadrinomial tree, including into this valuation the stochastic
volatility of the underlying asset. The main contribution is the formal derivation of a risk-neutral valuation as
well as the market risk premium associated with volatility, verifying this condition via numerical test on
simulated and real data, showing that our proposal is consistent with Black and Scholes formula and
multiplicative binomial trees method.

Keywords Real options, Stochastic volatility, Diffusion processes, GARCH-diffusion, Quadrinomial

numerical method

Paper type Research paper

1. Introduction
Authors such as Trigeorgis (1996), Mun (2002) and Damodaran (2019) recognize there is a
difference between the theoretical concepts of valuation of capital assets and their empirical
approximation, a discrepancy that is reflected in a gap not deeply explained and with
sufficient academic rigour between the market value and its theoretical estimate. Therefore,
different methodological alternatives have been proposed to mitigate this difference, but few
consider key factors that generate value, such as those that try to measure and estimate
uncertainty through the use of volatility, which usually has been moderately studied and
ends up being relevant at themoment ofmaking any type of valuation on a capital asset (Dixit
and Pindyck, 1994; Valencia Herrera and Mart�ınez G�andara, 2009; �Alvarez Echeverr�ıa
et al., 2012).

In academia, the use of discounted cash flow (DCF) as a method used to value capital
assets is common, but there are numerous criticisms about its use because it does not include
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elements such as contingent events, risk present in the cash flows and volatility (Trigeorgis,
1996). To overcome some of these problems, the real options approach (ROA) was developed,
which complements the DCF and allows it to include volatility as a fundamental parameter to
quantify the risk and collect some elements associated with uncertainty (Keswani and
Shackleton, 2006; Sabet and Heaney, 2017). The ROAmodel was derived from its simile in the
theory of financial options by modelling the value of assets as a call or put options,
considering that it is applied to investments in assets or real markets, although there is not a
tradable market (Cobb and Charnes, 2004).

Since the Black and Scholes’s (1973) seminal work, which is considered generally used
as a method for estimating the value of European call and put options, multiple models and
extensions have appeared that allow the valuation of other types of options in different
contexts, using of different estimation techniques, such as closed analytical solutions,
finite difference method, Adomian decomposition method and numerical method through
multiplicative and additive binomial trees, but the problem of considering volatility
constant persists. Recently, some models have appeared to include stochastic volatility
and were created, fundamentally, to avoid considering this fixed variable in terms of
evaluation time horizon. Motivated by this empirical evidence, several authors, such as
Hull and White (1987), Scott (1987), Scott (1987), Chesney and Scott (1989), Stein and Stein
(1991) and Heston (1993), have proposed models that involve stochastic volatility as a
parsimonious extension of the Black–Scholes model (Black and Scholes, 1973). Amongst
previously mentioned models, the GARCH-diffusion type proposed by Drost and Werker
(1996), Duan (1997) and Duan (1996) offers the first approximation between a GARCH
process and a stochastic volatility model, supported by multiple research theoretical
(Ritchken and Trevor, 1999; Barone-Adesi et al., 2005; Christoffersen et al., 2010;
Chourdakis and Dotsis, 2011) as well as empirical (Fig�a-Talamanca, 2009; Plienpanich
et al., 2009; Wu et al., 2012, 2014, 2018). This paper proposes and motivates the inclusion of
stochastic volatility in the ROA model, considering a rigorous mathematical development
from a GARCH-diffusion stochastic differential equation (SDE) that has a numerical
solution using multiplicative trees; besides, a prior estimate of a GARCH (1,1) process is
required to allow an adequate real options valuation in real-world and risk-neutral
situations.

This paper is organized as follows: Section 2 summarizes the stochastic volatility models
and describes theGARCH-diffusionmodel used for the development of this research. Section 3
presents, in summary, the multiplicative quadrinomial tree method to assess real options.
Section 4 offers a brief description of real options valuation, specifically, its use according to
the method proposed. In Section 5, we present a series of numerical experiments and some
examples. Finally, Section 6 is the discussion and conclusions.

2. Literature review
One of the strongest assumptions considered in the Black–Scholes model (Black and
Scholes, 1973) is that volatility ðσÞ is constant; many studies have demonstrated that
logarithm of returns on asset prices have leptokurtosis and conditional variance that
changes randomly as a function of time (Grajales Correa and P�erez Ram�ırez, 2008) and the
assumption of conceiving a normal distribution does not apply (Fern�andez Casta~no, 2007),
additionally, implied volatilities are considered non-constant and differ between exercise
prices and time tomaturity. For these reasons, several extensions have been proposed in the
literature in which volatility is considered a function of time as well as the price of the
underlying asset, whereupon the linearity of drift and diffusion components of the asset
price are maintained but incorporate a second equation that allows modelling the variance
behaviour of St.
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2.1 Stochastic volatility models
Amodel with stochastic volatility describes its change over time and generalizes the Black–
Scholes model, defined in a given filtered probability space (Ω, F , F t, ℙ), which
generally satisfies a system of SDEs (Hull and White, 1987; Scott, 1987; Wiggins, 1987;
Chesney and Scott, 1989; Nelson, 1990a, b; Stein and Stein, 1991; Heston, 1993; Hilliard and
Schwartz, 1996; Drost and Werker, 1996; Duan, 1996, 1997; Wilmott, 1998; Ritchken and
Trevor, 1999; Barone-Adesi et al., 2005; Chang and Fu, 2009; Fig�a-Talamanca, 2009; Moretto
et al., 2010; Christoffersen et al., 2010; Chourdakis and Dotsis, 2011; Wu et al., 2012; Wu et al.,
2014; Wu and Zhou, 2016; Peng and Peng, 2016; Wu et al., 2018; Wu et al., 2020, see Table 1).
We considered an SDE system described as follows:

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dσt ¼ f ðSt; σt; tÞdt þ gðSt; σt; tÞdW ð2Þ
t

(1)

where μ is constant and volatility σt is considered as a dynamic variable in the price St. Studies
like Wu et al. (2018) showed that the implied volatility, captured from historical data from the
market, takes a relevant role in fitting the prices of the options asKim andRyu (2015) explained
as well. Functions f and g correspond to the tendency and diffusion of volatility, respectively.

Themodel incorporates two sources of randomnessW
ð1Þ
t andW

ð2Þ
t that correspond toWiener’s

standard processes with a correlation coefficient ρ. The price process fSt; 0≤ t ≤Tg is not
completely described by equation (1), and the value St will be conditioned to the information of
S0, σ0 and to the trajectory followed by volatility fσs; 0≤ s≤ tg.

The GARCH-diffusion model was introduced by Wong in 1964, but its popularity only
grew following the works of Nelson (1990a, b). An important condition was discovered by
Christoffersen et al. (2010) who demonstrated empirically, through the use of realized
volatilities on the S&P500 returns with an option’s data panel, that the Heston model was
poorly specified because, in the diffusion model presented by the author, volatility was found
in the square root instead of being considered linear; these conclusions were reaffirmed by
Chourdakis and Dotsis (2011) although they also suggested that the model should consider a
nonlinear drift against a linear one.

Recent studies have indicated that this model allows a better description of the behaviour
and dynamics of financial series than other types of models, such as Heston (1993), Aı€t-
Sahalia and Kimmel (2007), Jones (2003) and Wu et al. (2018).

Also, it has been used as a good model for adjusting financial option data (Christoffersen
et al., 2010; Chourdakis and Dotsis, 2011; Kaeck and Alexander, 2012; Wu et al., 2012, 2014,
2018, 2020). The most recent applied research related to this model is summarized in Table 2.

In general terms, this type of model is usually characterized by not having a closed
solution and is in the class of non-affine models; also, their solutions must be achieved with
simulation, numerical methods (Wu et al., 2012) or the use of integrals in SDEs (Barone-Adesi
et al., 2005; Florescu and Viens, 2008; Vellekoop and Nieuwenhuis, 2009). The system of
traditional equations presented by this model has the following functional structure (Barone-
Adesi et al., 2005):

dSt ¼ μStdt þ
ffiffiffiffiffi
Vt

p
StdW

ð1Þ
t

dVt ¼ ðc1 � c2VtÞdt þ c3VtdW
ð2Þ
t

(2)

where c1, c2 and c3 are positive constants; μ is the tendency parameter; c2 is themean-reversion
rate; ðc1Þ=ðc2Þ is the mean long-term variance and c3 models the random behaviour of

volatility and corresponds usually to the volatility of volatility. For its part, W
ð1Þ
t and W

ð2Þ
t

correspond to Wiener processes with a correlation coefficient ρ.
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An alternative way to present the structural form of equation (2) is an SDE; following
(Wu et al., 2012):

dSt ¼ μStdt þ
ffiffiffiffiffi
Vt

p
StdW

ð1Þ
t (3)

Method proposed Author(s) Comments

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dVt ¼ δVtdt þ ξVtdW
ð2Þ
t

Hull and White
(1987)

Themajor contribution was that these parameters δ
and ξwere declared and considered constant
An analytical solution was also presented to assess
a European call or put options
The authors concluded that Black–Scholes model
generally overestimates the option value, and the
degree of this overvaluation increases with time at
expiration

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dσt ¼ βðσ* − σtÞdt þ γdW ð2Þ
t

Scott (1987) As a novelty, σt which is the instantaneous
volatility of the price asset, follows a mean-
reversion process, the Ornstein–Uhlenbeck type
It was concluded that it was not possible to find an
analytical solution of the proposed SDE, but that its
results were satisfactory when the estimated prices
of options were contrasted by the Monte Carlo
simulation method

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dσt ¼ f ðσtÞdt þ θσtdW
ð2Þ
t

Wiggins (1987) The author decided to use f ðσtÞ as a function that
describes the volatility tendency σt
The results showed that there are not many
differences between the valuation of his proposal
and the one obtained through the Black–Scholes
model

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dσt ¼ σt

�
1

2
γ2 þ βða− ln σtÞ

�
dt

þ γσtdW
ð2Þ
t

Chesney and
Scott (1989)

In this paper, it was possible to demonstrate that
the wealth variable can be eliminated if the utility
function includes constant relative risk aversion
(CRRA), and the claim payments do not depend
directly on wealth

dSt ¼ μStdt þ σtStdW
ð1Þ
t

dσt ¼ −δðσt − θÞdt þ κdW ð2Þ
t

Stein and Stein
(1991)

In this case, they used analytical techniques to
derive a closed explicit solution when volatility
follows an Ornstein–Uhlenbeck process (or AR1
process), with a reversion tendency to the long-term
mean θ

dSt ¼ μStdt þ ffiffiffiffi
vt

p
StdW

ð1Þ
t

dvt ¼ κðθ− vtÞdt þ σ
ffiffiffiffi
vt

p
dW

ð2Þ
t

Heston (1993) The author used a technique to derive a closed-form
solution for pricing a European call option on an
asset with stochastic volatility. The technique is
based on characteristic functions

dSt ¼ μStdt þ
ffiffiffiffiffi
Vt

p
StdW

ð1Þ
t

dVt ¼ ðc1 − c2VtÞdt þ c3VtdW
ð2Þ
t

Nelson (1990a);
Nelson (1990b)

The first approach between a GARCH process and
a stochastic volatility model (Duan, 1997), (Duan,
1996), (Drost and Werker, 1996). This model is
known as GARCH-diffusion
An algorithm was used to evaluate options, both
European and American, based on the construction
of trinomial trees (Ritchken and Trevor, 1999)
Barone-Adesi et al. (2005) analytically derived the
first four moments of the model and obtained a
closed solution to easily value an option

Source(s): Own elaboration

Table 1.
Summary of the SDE

systems with
stochastic volatility
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dVt ¼ αðθ � VtÞdt þ σVtdW
ð2Þ
t (4)

where parameters α, θ and σ are constant and are equivalent to the mean-reversion speed, the
mean long-term volatility or tendency and the volatility of volatility, respectively.

Consequently, W
ð1Þ
t and W

ð2Þ
t correspond to independent one-dimensional standard Wiener

motion processes.
This paper focuses on using equations (3) and (4) to summarize the numerical method for a

multiplicative quadrinomial tree that includes stochastic volatility, which will allow the
valuation of a derivative instrument, such as real options, when the volatility of the
underlying asset is stochastic. Hence, we use the equivalence proposed by Hull (2003) and
described by others (Pareja-Vasseur et al., 2020) that relates the conditional variance from
GARCH (1,1) and the stochastic variance from differential equation proposed in (4), i.e. Vt is

equivalent to h2t , with α ¼ ð1− α1 − β1Þ
Δt , θ ¼ α0

1− α1 − β1
and σ ¼ α1

ffiffi
2

pffiffiffiffi
Δt

p . These set of parameters of

the conditional variance could be estimated by the maximum likelihood method, through
computational tools such as Eviews or MatLab, previously checking the assumption of
conditional heteroskedasticity (Bollerslev, 1986).

2.2 Quadrinomial recombination
The multiplicative quadrinomial trees methodology is summarized below, including all
formulas for probabilities and transitions factors, and discounted rates. Considering the
GARCH-diffusionmodel, over the time interval ½ti; tk�, where μ∈ℝ, α≥ 0, θ > 0and σ > 0are

constant, while fW ð1Þ
t gt≥0 and fW ð2Þ

t gt≥0 are independent one-dimensional standard Wiener
motions, supposing further that St ¼ Si and Vt ¼ Vi, probabilities of the transition and
growth factors for the processes Vt and St, respectively, are defined as Pareja-Vasseur and
Mar�ın-S�anchez (2019) and Mar�ın S�anchez (2010):

Author Main conclusions

Fig�a-Talamanca
(2009)

Use multiple stock indexes to compare theoretical and empirical autocovariance. The
conclusion was that this model captures autocovariance observed in data

Plienpanich et al.
(2009)

Integrated into the diffusion model a disturbance through a fractional noise, their
results showed that the estimation of stock price of a commercial bank is better using
this model than the traditional Black–Scholes model

Wu et al. (2012) Used the Hang Seng index (HSI) and concluded that using this model was better for
predicting the price of warrants than the classic model

Wu et al. (2014) Studied Hong Kong stock market through American options and found the same
advantage using this model against the traditional one

Wu and Zhou (2016) Used the Chinese volatility index (iVIX); their findings indicated that the risk of
volatility market values and risk premium volatility were negative, which implied that
investors in the Shanghai stock exchange are risk averse

Wu et al. (2018)
Wu et al. (2020)

They proposed an estimation procedure that uses joint data on the underlying asset
and options prices. They used HSI data and index warrant prices. Their findings
indicated that market prices of the volatility risk play an important role in fitting
option prices
They extended the realized EGARCH-MIDAS (REGARCH-MIDAS) model, which
incorporates the implied volatility (IV) derived from option prices. Through an
empirical study with the S&P 500 index, they found that IV contains valuable
information for predicting volatility

Source(s): Own elaboration

Table 2.
Summary of the
empirical or applied
research of GARCH-
diffusion model
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u
ðiÞ
j ¼ exp

�
σ
ffiffiffiffiffiffi
Δt

p �
; d

ðiÞ
j ¼ 1

u
ðiÞ
j

; A
ðiÞ
jV ¼ exp

 
α

 
θ

V
ðiÞ
j

� 1

!
Δt

!
and

p
ðiÞ
j ¼ 1

2
þ

�
αθ
V

ðiÞ
j

� α� 1
2
σ2
� ffiffiffiffiffiffi

Δt
p

2σ

h
ðiÞ
j ¼ exp

� ffiffiffiffiffiffiffiffi
V

ðiÞ
j

q ffiffiffiffiffiffi
Δt

p �
; l

ðiÞ
j ¼ 1

h
ðiÞ
j

;AS ¼ expðμΔtÞ and q
ðiÞ
j ¼ 1

2
þ

�
μ� V

ðiÞ
j

2

� ffiffiffiffiffiffi
Δt

p

2
ffiffiffiffiffiffiffiffi
V

ðiÞ
j

q
To consider the recombination of two binomial trees SðiÞ ¼

�
S
ðiÞ
j

�
, j∈ J ðiÞ and

V ðiÞ ¼
�
V

ðiÞ
k

�
, k∈KðiÞ which possess the same number of nodes along their time axes,

that is, J ðiÞ ¼ KðiÞ for all i. Denote the transition probabilities of SðiÞ by qðiÞj with increases up

and down defined by h
ðiÞ
j and l

ðiÞ
j , and forV ðiÞ by pðiÞk , u

ðiÞ
k and d

ðiÞ
k , respectively. The values of

the two variables are being modelled as a direct product SðiÞ 3V ðiÞ, defined by a tree TðiÞ

with a node described byT
ðiÞ
j;k ¼

�
S
ðiÞ
j ;V

ðiÞ
k

�
at the time i. In the next step,T

ðiÞ
j;k generates four

nodes: T
ðiþ1Þ
jþ1;kþ1 ¼

�
S
ðiÞ
j h

ðiÞ
j ;V

ðiÞ
k u

ðiÞ
k

�
, T

ðiþ1Þ
j;kþ1 ¼

�
S
ðiÞ
j l

ðiÞ
j ;V

ðiÞ
k u

ðiÞ
k

�
, T

ðiþ1Þ
jþ1;k ¼

�
S
ðiÞ
j h

ðiÞ
j ;V

ðiÞ
k

d
ðiÞ
k

�
and T

ðiþ1Þ
j;k ¼

�
S
ðiÞ
j l

ðiÞ
j ;V

ðiÞ
k d

ðiÞ
k

�
, and respective probabilities are q

ðiÞ
j p

ðiÞ
k ,
�
1− q

ðiÞ
j

�
p
ðiÞ
k , q

ðiÞ
j

�
1− p

ðiÞ
k

�
and

�
1− q

ðiÞ
j

� �
1− p

ðiÞ
k

�
, respectively (Lari-Lavassani et al., 2001) (Pareja-

Vasseur and Mar�ın-S�anchez, 2019).
After all the corresponding parameters have been defined forVt and for St, it is possible to

construct a tree that emulates the behaviour of the price St, where each discrete step has a
value of branches equal to 4n, where n corresponds to the number of steps, but when the
respective recombination is performed, the number of branches decreases to n2, as can be seen
in Figure 1. Also, the value of each position for the first step of the tree is presented in Figure 1
(Pareja-Vasseur and Mar�ın-S�anchez, 2019).

3. Method
It is common knowledge that an option is considered a financial instrument that grants a
right to the buyer and an obligation to the seller, to buy or sell a certain asset or underlying
asset at a price established on a fixed date; the exchange price that is obtained for acquiring
the option is known as premium. Amongst the methods used in its valuation, the
multiplicative binomial method is the most often used and appropriate because it is easy to
understand and construct (Cox et al., 1979). After all, it allows us to emulate the price of the
underlying asset in discrete time and offer the respective valuation of the derivative.

3.1 Real options valuation
One of the recent development techniques for valuing capital assets is known as ROA;
according to this method, which is complementary to the DCF model, the aim is to introduce
the volatility present in cash flows and the occurrence of contingent events. The method
emerges from the theory of financial options, except the valuation is performed for capital
assets in real markets. This type of options, such as financial options, can be assessed using
different techniques, where the most appropriate is the numerical method with multiplicative
binomial trees (Cox et al., 1979), because of its simple and intuitive handling, in the sense that
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continuous-time price of an underlying asset approximates to a geometric Brownian motion
(GBM) (Smith, 2005; Si~na and Guzm�an, 2019), emulated through a process in discrete time
organized as a tree, where it is possible to analyse, in graphical and numerical forms, the
anticipated execution (or not) of the option. The ROA technique allows us to assess the
strategic Net Present Value (NPV), through the appropriated estimation of the premium value
of call/put options and comparing this value to the traditional DCF method, which is also
called static NPV. According to this theory, options are used to, for example, defer, contract,
expand or abandon that correspond to American call and put options adapted or modified to
that context (Sabet and Heaney, 2017; Si~na and Guzm�an, 2019).

The main criticism of this methodology is that the same variables are used as in financial
options valuation, with any kind of adjustment respect the application’s field. Specifically, the
problem lies in these variables: the discount rate and volatility. The first problem concerns
some adjustment measures, and it is even possible to use utility functions to represent an
economic agent that models attitudes and preferences for a certain situation and thereby
estimate the value as a true equivalent, using a risk-free discount rate without complications
(Pareja Vasseur and Cadavid P�erez, 2016). The second problem is the precarious development
of the theoretical approaches to estimate volatility; the traditional estimation methodology,
starting from the logarithmic return of the cash flows (Rogers, 2002) to the conditional
volatility method of Brand~ao et al. (2012), going through the normal returns of cash flows
(Lewis and Spurlock, 2004), the project proxy approach, the market asset disclaimer method
or Copeland and Antikarov’s method (Copeland and Antikarov, 2003) the administrative
estimates or made by experts, the correlated risk-free asset (Trigeorgis, 1996), the market
proxy approach or historical analysis (Mun, 2002), the implied volatility (Lewis and Spurlock,
2004), the Herath and Park�s method (Herath and Park, 2002) and those of Godinho (2006),
basically focused on the estimation of the unconditional volatility, which retains the
drawback of assuming this phenomenon as constant. Works such as Brand~ao et al. (2012)
only allow us to estimate it conditionally but without exploring the benefits of modelling it
stochastically.

Most of the volatility estimationmethods based on the ROA technique are basic, built on a
single-level SDE, which only allows modelling the random asset’s price, and fails to include

T j,k+1i+1

T j+1,ki+1

T j,ki+1

T j+1,k+1i+1

T j,ki

Note(s): The figure was made with Solid Edge

Source(s): Own elaboration

Figure 1.
The first and second
step of the proposed
multiplicative
quadrinomial tree
model to stochastic
asset price and
volatility
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the effect of volatility on this variable. A differential equation that commonly uses the
following structure is given by:

dSt ¼ μStdt þ σStdWt (5)

with t ∈ ½0;T� and the initial condition S0 ¼ S, where μ is constant and denotes the asset’s
average rate of return, σ > 0 corresponds to volatility and fWtgt≥0 is a one-dimensional
standard Wiener process.

Because of that it is necessary tomakeprogress onboth sides: the estimation of the volatility
phenomena and its respective modelling through numerical methods because the high number
of methodologies focuses mainly on an unconditional estimation of it. Finally, some of these
techniques only present basic models for estimating the variable treated, which allows more
advanced extensions or versions to be modelled, both the underlying asset and the volatility
behaviour, conditionally and stochastically, but none of them explore the necessary changes
thatmust be implemented in thevaluation of optionswith thesemethods, specifically numerical
ones, which are the most used and are also a motivation for the current research.

3.2 Algebraic expression
Assume an option (real or financial) over an asset that does not pay dividends, with an initial
price S0 and strike priceK, is divided into N sub-intervals, each one with duration Δt. Define
f
ðiÞ
j;k the value of the option in the node ði; j; kÞ. Based on Mar�ın S�anchez (2010) and Pareja-

Vasseur and Mar�ın-S�anchez (2019), the price of the asset has quadrinomial recombination in
node ði; j; kÞ, which can be represented by the following expression:

T
ðiÞ
j;k ¼ S0

Yk−1
w¼1

hww

Yi−k
w¼1

lk
i−w*V0

Yj−1
m¼1

umm

Yi−j
m¼1

dj
i−m (6)

with T0 ¼ T
ð1Þ
1;1 ; i ¼ 2; . . . ;N, j ¼ 1; 2; . . . ; i and k ¼ 1; 2; . . . ; i. Keep in mind that in this

case, both u and d are constant, so equation (6) can be summarized as follows:

T
ðiÞ
j;k ¼ S0

Qk−1
w¼1 h

w
w

Qi−k

w¼1 lk
i−w*V0u

j−1di−j.

Below there is an algebraic approach based on the proposed methodology to assess the
basic real options:

(1) In case of an option to wait, the evaluation is performed in a similar way as the
American financial call option – where the value at its maturity date is given by
maxðTt −KÞ; so,

f
ðNÞ
j;k ¼ max

�
S0

Yk−1
w¼1

hww

YN−k

w¼1

lN−w
k *V0u

j−1dN−j � K; 0
�
;

for j ¼ 1; 2; . . . ; i and k ¼ 1; 2; . . . ; i., while its discounted value is defined as,

f
ðiÞ
j;k ¼ max

h
T

ðiÞ
j;k � K;

�
q
ðiÞ
j p

ðiÞ
k f

ðiþ1Þ
jþ1;kþ1 þ

�
1� q

ðiÞ
j

�
p
ðiÞ
k f
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(2) In case of an expansion option, where the expansion factor is defined by EF and K
represents the additional investment for expansion, it is considered as a modified
American call option and the value at its maturity date is given by
maxðTt*EF −K;TtÞ; so,
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for j ¼ 1; 2; . . . ; i and k ¼ 1; 2; . . . ; i. Also, its discounted value is defined as,
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(3) In case of a contraction option, the contraction factor is defined byCF, and at the same
time, K represents the disinvestment or release of funds by contraction, it is
considered as a modified American put option and the value at its maturity date is
given by maxðTt;Tt*CF þ KÞ; so,
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For j ¼ 1; 2; . . . ; i and k ¼ 1; 2; . . . ; i. Also, its discounted value is defined as,
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(4) In case of an abandonment option, the salvage value corresponds toK, it is considered
as a modified American put option, the value at its maturity date is given by
maxðTt ;KÞ; so,
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for j ¼ 1; 2; . . . ; i and k ¼ 1; 2; . . . ; i. Also, its discounted value is defined as follows,
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3.3 Risk-neutral valuation
To evaluate options in a risk-neutral world, two conditions must be assumed: The first is that
estimated future cash flows can be determined by discounting their expected values at the
risk-free rate, and the second is that the expected return on derivatives is the risk-free interest
rate. To eliminate the potential for arbitrage on the discounted expected value, a single
probability measure P*must be constructed from the subjective p, such that discounted price
at interest rate r is a martingale and as mentioned earlier, the discounted expected value at
this rate according to the new probability P* does not present arbitrage opportunities. The
measure of the probability that is considered in a risk-neutral world is known as Martingale
equivalent measure (MEM). Following Heston (1993), Mar�ın S�anchez (2010), Pareja-Vasseur
and Mar�ın-S�anchez (2019), Wu et al. (2012), Wu et al. (2014) andWu et al. (2018) and applying
the theorem Cameron–Martin–Girsanov and Girsanov’s theorem (Mao, 1997, pp. 270–272),
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the discounted pay based on the risk-free rate r is S*
t ¼ e−rtSt and its stochastic differential

corresponds to:

d
	
e−rtSt


 ¼ −rSte
−rtdt þ e−rt

	
μStdt þ

ffiffiffiffiffi
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p
StdW

ð1Þ
t



dS*

t ¼ ðu� rÞS*
t dt þ
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Vt

p
S*
t dW

ð1Þ
t

(7)

As above, the discounted price S*
t satisfies the same equation that St, where the return μ had

been replaced too ðμ− rÞ. This way the expected value under the subjective probability P
from the discounted payoff of a derivative instrument will present arbitrage opportunities
due S*

t is not a Martingale. To find a probability measure where S*
t is a Martingale, equation

(7) must bewritten in away that the tendency term could be assimilated inside theMartingale
term. From there, the two previously mentioned theorems could establish that ðμ− rÞ and
1=

ffiffiffiffiffi
Vt

p
are bounded so fðtÞ ¼ −u− rffiffiffiffi

Vt
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u . Hereby could be observed that S*

t is a Martingale respect

F t to 0≤ τ≤ t. Now, replacing fðtÞ in equation (3) and dWt
ð1Þ* ¼ dWt

ð1Þ þ fðtÞ, we got:
dSt ¼ rStdt þ

ffiffiffiffiffi
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p
StdW
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t

(8)

Note that equation (8) corresponds to the behaviour price in a risk-neutral world. In the same

way to equation (4), the following expression is obtained: wðtÞ ¼ −rVtþαðθ−Vt Þ
σVt

, that in terms of

market risk premium associated with volatility, it could be represented by wðtÞ ¼ −λðt;S;VÞ
σVt

accordingly to dWt
ð2Þ* ¼ dWt

ð2Þ þ −λðt;S;VÞ
σVt

.

Substituting in equation (4) and considering that λðt; S;V Þ is proportional to volatility, ∃
λ > 0 such as λðt; S;V Þ ¼ λVt, so:

¼ ½αðθ � VtÞ � λVt�dt þ σVtdWt
ð2Þ*

¼ α*ðθ* � VtÞdt þ σVtdWt
ð2Þ*

where α* ¼ ðαþ λÞ and θ* ¼ αθ
ðαþλÞ, fW ð1Þ*

t gt≥0 and fW ð2Þ*
t gt≥0 are independent one-

dimensional standard Brownian motions in the probability space (Ω, Ғ, P*). The term
λðS;V ; tÞ represents the price of volatility risk and is independent of the particular asset, and
there is evidence that this term is not zero for options (Heston, 1993), while in contrast, Hull
and White (1987) proposed to set this term at zero, based on the assumption that it is
independent of the aggregate consumption. This term is the variance risk premium as a linear
function of variance, namely λðVt; tÞ ¼ λVt (Wu et al., 2012, 2014, 2018). Following Heston’ s
(1993) theory, this parameter should be determined for each particular asset (Pareja-Vasseur
and Mar�ın-S�anchez, 2019).

4. Results
4.1 Comparison between quadrinomial method with stochastic volatility, a binomial method
with constant volatility and the Black–Scholes equation
Before presenting examples applying the proposed methodology using real options, it is
necessary to graphically illustrate the asymptotic behaviour of quadrinomial and binomial
methods, comparing the results with those obtained with the Black–Scholes model. Suppose
that the dynamic behaviour of daily prices of a given financial asset can be modelled by a
GBM, using equation (5) with an initial condition S0 ¼ 10 and an annualized volatility
σBS ¼ 0:3162. Previous studies like Aziz (2017) assumed the historic price volatility capture
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properly the annual volatility project. With that in mind, now let us assume that it is required
to value a European call finance option derived from the underlying asset, whose exercise
price is K ¼ 10, with risk-free rate r ¼ 0:05 and time to maturity T ¼ 1; likewise, consider
traditional multiplicative recombination in binomial trees with N ¼ 200. It is possible to
verify that the binomial method is a particular or special case of the multiplicative

quadrinomial when V0 ¼ ðσBSÞ2 ¼ θ and σ tends toward zero. Let us further assume that α
is an arbitrary constant.

Figure 2 presents the results, showing that quadrinomial and binomial methods have near
solutions at around N ¼ 100, with values that are also proximate to those of the exact
solution estimated by the Black–Scholes model. Based on the previous results, we can
conclude that the traditional binomial tree is a particular case of the quadrinomial proposed
model, indicating that ourmodel is not just a generalization, but alsomore flexible to evaluate
different contracts where the underlying asset does not necessarily behave like the classic
GMB. Our framework opens a broad window to build analogous procedures with a different
stochastic process (e.g. as could be Heston’s and Scott’s model), which are used on financial
option valuations, and few studied on real options.

4.2 Example 1: valuation of an abandonment real option and sensitivity�s analysis of the
variables in the model in a real-world and risk-neutral world
Suppose that a firm in a certain sector of the economy wants to know the strategic value of a
project according to ROAmethodology and that its cash flows can bemodelled using the SDE
with equations (3) and (4). Assume in this case, the price of the commodity used to estimate the
cash flows is perfectly correlated with a project, and its respective cash flows and volatility
equal to the cash flows and the project’s volatility without administrative flexibility, as stated
in Brand~ao et al. (2012). The estimated present value of the project is S0 ¼ T0 ¼ 100, which
was estimated according to the traditional DCF methodology using an appropriate risk-
adjusted rate. The company also determined that it has an opportunity to assign the rights
and property of the project to a third party at a value of K ¼ 75when the market conditions
are unfavourable, that is, this value corresponds to the salvage value and remains constant

T j,k+1i+1

T j,k+2i+2

T j,k+1i+2

T j+1,ki+2

T j+2,ki+2

T j+1,ki+1

T j,ki

T j,ki+2

Note(s): The figure was made with MATLAB

Source(s): Own elaboration

Figure 2.
Comparison between
quadrinomial proposed
methodology,
traditional binomial
method and the Black–
Scholes method
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over the evaluation horizon of the firm’s abandonment option. Assume, besides, the following
arbitrary values: V0 ¼ 0:1, r ¼ 0:05, α ¼ 0:01, θ ¼ 0:1 and σ ¼ 0:1131, for the proposed
method, and σBS ¼ 0:3162 to the multiplicative binomial traditional methodology.

The results of the strategic NPV for the periods fromYear 1–5, with steps of two years, are
summarized in Table 3. Further, it was necessary to compare the results of the same
methodologies, but in this case, the volatility σ tending towards zero was assumed for the
proposed sample to show that it is a general case containing the particular one (caused by the
traditional binomial method). In the last row of Table 3, we can see that the proposed
methodology had a strategic NPV equals to 105:16, with a value of the abandonment option
5:16. If we assess them at three years, we found a result that was roughly in line with the
traditional methodology, with 105:37 and 5:37, respectively. It was therefore concluded that
there is a difference of less than 1% amongst the NPVs for the different evaluation periods
presented. After estimating the volatility value of the volatility for the proposed method, the
strategic NPV was set to a value of 108:51 for the case of σ ¼ 0:1131, with the corresponding
abandonment option corresponding to 8:51 if valued over five years. These results will
increase depending on the different values estimated for parameters σ and α. It is worthy to
mention that in this case, we are relaxing the constant volatility assumption, and due to the
estimation of the quadrinomial tree, we can estimate properly the value of the option without
this restriction. This means that a traditional estimation of an abandonment real option will
be inadequately estimated, regardless it is under or overestimated.

4.3 Example 2: a valuation case of an abandonment real option in a real-world
This example describes a real options valuation case using the algebraic expression of an
option of abandonment to find the value of the strategic NPV (the strategic NPV is the one
estimated through the ROA, and it considers the static NPV calculated through the CDF, as
the value of the real options identified and valued for a project). The numerical method
utilized was our proposed methodology (a recombining quadrinomial tree with stochastic
volatility and considering the values estimated for the proposed system). Finally, the solution
was compared with the estimated results of the traditional binomial method.

Suppose that an oil and gas firm wants to know the strategic NPV value of a project
according to the ROA methodology and that its cash flows can be modelled using SDE
equations (3) and (4). For this case, theWest Texas Intermediate (WTI) price serieswere taken
from the Bloomberg platform between January 2013 and August 2018 and were used to
estimate the cash flows, where those flows are perfectly correlated with the project,
additionally, its respective cash flows and volatility equal those cash flows of the project

Method\time 1 2 3 4 5

Example 1
(1) Quadrinomial tree σ 5 0.1131 102.4 104.49 106.36 107.39 108.51
(2) Binomial tree σBS 5 0.3162 101 104.92 105.37 107.21 107.51
(3) Quadrinomial tree σ 5 0.000000001 100.92 104.78 105.16 106.93 107.17

Example 2
(1) Quadrinomial tree 95.59 100.09 102.37 104.57 106.31
(2) Binomial tree 91.88 96.93 96.96 99.99 100.01
(3) Percentage difference 4.04% 3.26% 5.58% 4.58% 6.30%

Note(s): This exhibit shows the comparison of the value of the strategic NPV through the quadrinomial
method with T0 ¼ 100, K ¼ 75, V0 ¼ 0:1, α ¼ 0:01, θ ¼ 0:1, σ ¼ 0:1131 and 0:000000001, and binomial
method with S0 ¼ 100 and σBS ¼ 0:3162. The table was made using MATLAB and Excel
Source(s): Own elaboration

Table 3.
Comparison of the

value of the strategic
NPV through the

quadrinomial method
and the binomial

method
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without administrative flexibility (Brand~ao et al., 2012). The estimated static NPV of the
project is S0 ¼ T0 ¼ 91:82, which was estimated according to the traditional DCF
methodology using an appropriate risk-adjusted rate. The company also determined that
it has an opportunity to assign the rights and property of the project to a third party at the
value of K ¼ 66 when the market conditions are unfavourable; essentially, this value
corresponds to the salvage amount that remains constant over the evaluation horizon of the
firms for this abandonment option. As we say above, in this case, the traditional method
underestimates the strategic NPV, creating not just an erroneous valuation but violating the
non-arbitrageur’s statement.

Also, the following values were obtained from a previous GARCH (1,1) estimation process
of theWTI oil price yields and estimated their equivalents for the GARCH-diffusion proposed
system: V0 ¼ 0:1941, r ¼ 0:0294, α ¼ 0:0026, θ ¼ 0:1941 and σ ¼ 0:0869; and as well as:
σBS ¼ 0:3319, which was obtained using the standard deviation of theWTI returns series for
the multiplicative binomial traditional methodology (see Table 4). It is worth mentioning that
the estimation process is based on a quasi-maximum likelihood estimator.

The results of the strategic NPV for periods from Year 1–5, with annual steps, are
summarized inTable 5; aswe can see in all the cases, the estimated values using our proposed
method were higher than the traditional ones, which apparently would indicate an
undervaluation of the strategic NPV by estimating lower volatility than the one presented in
the yield series. Specifically, the first row shows the values for the proposedmethodology; for
example, for the 4th year, a strategic NPV was estimated at 104:57, with an abandonment
option of 12:75, whereas, using the traditional method with multiplicative binomial trees, that
is, the second row, the results corresponded to 99:99 and 8:17, respectively. The last row of
Table 5 shows the percentage differences between the NPV values between the twomethods,
concluding that there is an approximate average 5% for all the years of the evaluation of the
real options.

It is worth noting if constant volatility of 44:06% would be used in the traditional

methodology, which results from finding
ffiffiffi
θ

p
in the proposed method, in this case, the

difference amongst the results of the two methodologies would be narrow, an element that
would indicate that real option value of the traditional methodwould be undervalued due to a

Method
GARCH (1,1) GARCH-diffusion

Parameters α0 0.000496 α 0.002556
α1 0.061478 θ 0.194127
β1 0.935966 σ 0.086942

Note(s): Prepared by the authors using EViews and MATLAB
Source(s): Own elaboration

Method\time 1 2 3 4 5

(1) Quadrinomial tree 95.59 100.09 102.37 104.57 106.31
(2) Binomial tree 91.88 96.93 96.96 99.99 100.01
(3) Percentage difference 4.04% 3.26% 5.58% 4.58% 6.30%

Note(s): This exhibit shows a comparison of the value of the strategic NPV using the quadrinomial method
with T0 ¼ 91:82, K ¼ 66, V0 ¼ 0:1941, α ¼ 0:0026, θ ¼ 0:1941, σ ¼ 0:0869 and binomial traditional method
with S0 ¼ 91:82 and σBS ¼ 0:3319. The table was made using Matlab and Excel
Source(s): Own elaboration

Table 4.
Equivalent values of
the parameters for the
GARCH (1,1) and
GARCH-diffusion
processes

Table 5.
Comparison of the
value of the strategic
NPV through the
quadrinomial method
and the binomial
traditional method
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poor estimation of the volatility in the series because such a value was greater than estimated
using the standard deviation of the yields, which is commonly used.

5. Discussion
Regarding the computational cost, it is possible to conclude that it is not significant since the
objective of our research is to adopt the proposed numerical method to the conditions of the
process itself. Strictly speaking, we want to structure a methodology with some time-series
characteristics that are taken from the process, to find a more adjusted result, generating a
logical discrepancy between the values of the traditional method and the proposed one.
Future research aims are focus to analyse what occurs to the proposed model when there is a
correlation between Wiener motions. In the other hand, it can used different commodities in
real options applications to apply this proposed methodology.

In this paper, we study the particular case in which the correlation between the asset price
and its volatility is zero, although many empirical studies establish that this correlation can
be different from zero, as for example the model of Heston (1993).

The extension of this numerical method to models with non-zero correlation will be the
subject of future work.

5.1 Practical implications
As for the practical implications, the classical methodology of real options valuation assumes
that the underlying asset has constant volatility, but there is empirical and technical evidence
such as that presented in Example 5.3, where it is observed that the volatility of the
underlying asset is not constant and can be modelled as GARCH(1,1); not considering an
adequate functional form for the volatility of any underlying asset can generate an incorrect
strategic NPV estimation and consequently make unwise investment decisions.

Ourmethodology presents reliable results, mainly because our derivation lies in a rigorous
mathematical background and regarding the implementation, the multiplicative binomial
recombination tends to reduce the computational cost.

6. Conclusions
This paper extends the literature about numerical methods for valuing derivatives,
specifically for ROA valuation; the main advantage of the methodological proposed is that it
includes non-constant volatility, from a formal derivation of the first two moments of a
GARCH-diffusion system, to determine the probabilities of transition, growth factors and
discount rates. Throughout the paper was applied a rigorous mathematical technique, which
offers a relatively easymethod for the public to implement and use, so it can be used to assess
all types of options, in both, risk-neutral and real situations, using non-constant volatility.

The findings can be summarized as follows. First, the methodological proposed was
comparable to the traditional methodology using multiplicative binomial trees as well as the
closed solution proposed by Black and Scholes. The above fact occurs when the volatility in
the first-mentionedmethod tends toward zero; since this variable is defined positive, the value
of the option will vary, and this change will be in function of the values assigned to the
parameters α, θ and σ that are part of the methodology proposed. Second, it was possible to
use an algebraic expression to depict the evolution of the price of an asset in the presence of
both dynamic and constant volatility; in this manner, its effect is captured in an appropriate
way, which allows better modelling of the evolution of behaviour of the underlying asset in
themarket. Third, the proposedmethod can be used in the presence of risk neutrality through
the appropriate use of a market premium, which harms the value of a call option (wait and
expand) and has a positive effect on a put option (contraction and abandonment). Besides, the
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examples have shown that an appropriate valuation of real options is possible regardless of
whether volatility is constant or not. Finally, in both examples, it was possible to verify how
the inclusion of conditional and stochastic volatility in the ROA model affected the value of
the real option; in the first example, it was detailed when the σ value of the proposed method
changes, the strategic NPV values between the two examined methodologies differ, whereas
when this variable takes values close to zero, both methodologies offer an identical solution.
On another example, it was concluded that the option took a higher value in our method than
the binomialmethod,mainly because the constant and unconditional volatility is not reflected
in a time series, specifically, in the case ofWTI oil commodity, the value of the option seems to
be higher than its traditional simile using the multiplicative binomial method, which is
explained by greater volatility obtained than estimated with standard simple yields

deviation. It was also indicated, when the traditional method uses
ffiffiffi
θ

p
as volatility, the values

of the strategic NPV were similar.
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