Generation and distribution of income in Mexico, 1990-2015

Francisco Javier Ayvar-Campos and José César Lenin Navarro-Chávez Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, and

Víctor Giménez

Department of Business, Universitat Autònoma de Barcelona, Barcelona, Spain

Abstract

Purpose – This paper aims to review the efficient use of economic and social resources to generate income and, at the same time, reduce the concentration of wealth in the 32 states of the Mexican Republic during the period 1990-2015.

Design/methodology/approach – Data envelopment analysis with the inclusion of a bad output was used to diagnose the efficiency of Mexican entities, and the Malmquist–Luenberger index was applied to understand how this efficiency evolves.

Findings – The results clearly show that only 3 of the 32 units studied generated and distributed wealth efficiently, while the other 29 must increase their level of income and its distribution.

Originality/value – According to the authors' knowledge, this is the first work that performs a temporal analysis of the efficiency in the generation of Human Development Index using bad outputs and the Malmquist–Luenberger index.

Keyword Mexico

Paper type Research paper

1. Introduction

In Mexico, the Human Development Index (HDI) during the period 1990-2015 increased by 17.6 per cent. However, this indicator of welfare is still lower than that of other Latin American economies; one of the main causes is the low level of per capita income in the economy (UNDP, 2018b). At the level of federal entities, Mexico City, Nuevo León, Chihuahua, Baja California, Sonora and Aguascalientes stand out as the states with the highest levels of human development, while Hidalgo, Michoacán, Chiapas, Oaxaca and Guerrero have the lowest HDI levels, thus presenting a strong state and regional disparity in social welfare (UNDP, 2011, 2016). The dynamics of variables such as public expenditure, level of education and employed personnel, despite the positive trends throughout the study period, reveal the need for higher levels of investment, employment and education as its impact on the income dimension of the national and state HDI has been low (INEGI, 2018a,

© Francisco Javier Ayvar-Campos, José César Lenin Navarro-Chávez and Víctor Giménez. Published in *Journal of Economics, Finance and Administrative Science*. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licenses/by/4.0/ legalcode

Journal of Economics, Finance and Administrative Science Vol. 25 No. 49, 2020 pp. 163-180 Emerald Publishing Limited 2077-1886 DOI 10.1108/JEFAS-04-2018-0040

Received 22 April 2018 Revised 20 June 2018

Accepted 23 October 2018

Income in Mexico

163

JEFAS 25,49

2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h). In turn, the income concentration data in Mexico indicate that a significant percentage of the states has an asymmetric distribution of wealth, affecting negatively the level of welfare of the society (Tello, 2010; Quiroz and Salgado, 2016; Ortiz *et al.*, 2017). For this reason, it is relevant to establish as a research question how efficient were the 32 entities of the Mexican Republic in the use of their economic and social resources to generate and distribute income during the period 1990-2015. The results of this study allow to quantify the efficiency in the management of the resources during the analyzed period and, therefore, contribute to the design of strategies and policies that energize the behavior of the income dimension of the HDI.

Harttgen and Klasen (2012) conceive human development as the process that expands the opportunities of the persons for lives the life that they value and, therefore, reach a higher level of well-being. Understanding as opportunities the possibility to have a long and healthy life; be literate and possess knowledge; have economic resources that grant a decent standard of living; and be involved in the community life. If we do not own them, many other options and opportunities of life are inaccessible (UNDP, 2018a). Determining the level of human development of an economy is key to establish public policies as it allows to evaluate the evolution of the living conditions of the population; diagnose the problems; and enrich the design of government objectives and strategies (López-Calva *et al.*, 2004).

In the measurement of human development, the HDI highlights, proposed by the United Nations Development Program (UNDP). This index combines three elements to evaluate the progress of countries in terms of human development: the Gross Domestic Product (GDP) per capita, health and education; each one is included with the same weight in the index (Griffin, 2011; Harttgen and Klasen, 2012). It is due to its simplicity and easy access to the statistical information that is required for its calculation that the HDI has become the most used mechanism to measure human development and social welfare (León, 2002; Ordóñez, 2014). Under the vision of human development, and consequently of the HDI, the individual must be the center of the design of public policies and, at the same time, the fundamental instrument of their own development (Griffin, 2011).

The distribution of income is the way in which the national product is distributed among those who have contributed to its production, grouping them into homogeneous categories according to the function exercised or according to the nature of the contribution made (Salinas, 1977; Medina, 2001). The concentration of income is caused by multiple factors. The way in which this asymmetry is measured is through inequality indices, which are measures that summarize the distribution of a variable among a set of individuals. Consequently, the inequality in the distribution of wealth is given by the degree of dispersion of income with respect to a reference value (Ruza, 1978; Carrillo and Vázquez, 2005; Ospina and Giraldo, 2005). The indicators of inequality are usually classified as positive and normative measures (Carrillo and Vázquez, 2005; Ospina and Giraldo, 2005; Mazaira et al., 2008). This research uses positive measures as the normative depends on ethical judgments that are reflected in the values chosen for the parameters of the social welfare function (Acevedo, 1986). Of the divers positive inequality measures, this research uses the Gini Coefficient (Cg), because it allows a simple interpretation of the degree of income concentration and meets the four basic properties of an inequality indicator: is sensitive to the effect of socioeconomic factors of inequality, considers the influence of any social hierarchy on changes of the composition of the population, is consistent with the argument of the Lorenz curve and shows invariance in the face of proportional increases in income (Gradín and del Río, 2001; Medina, 2001; Yáñez, 2010).

164

The income dimension of human development apart of the GDP per capita includes other indicators such as the concentration of income to determine in a more inclusive way the economic well-being of society (Hicks, 1997; Alkire and Foster, 2011). Thus, it reaffirms the fact that there can be no economic well-being if the income generated by a society is not properly distributed among the population that generated it (Mazaira *et al.*, 2008; Yáñez, 2010). Hence, an excessive concentration of income can be considered as negative and, therefore, its decrease is recommended (Quiroz and Salgado, 2016). For it, is possible to point out that the concentration of income has a behavior similar to an unwanted output, while income itself would behave as a desired output.

Given that income generation involves the use of resources, it is important, prior to any manipulation of factors, to determine under which combination of socioeconomic inputs an economy is achieving the highest level of income per capita with the lowest concentration of it. In other words, it is relevant to analyze the efficiency in the generation of income. Several studies point the importance of the efficient use of resources to increase the economic well-being of an economy. It is argued that the welfare of society depends on the application of public policies aimed at the efficient use of resources and the promotion of greater equity in the distribution of wealth (Martić and Savić, 2001; Cortés, 2003; Stimson *et al.*, 2006; Vargas, 2009; Halkos and Tzeremes, 2010; Tello, 2010; Poveda, 2011; Torres and Rojas, 2015; Quiroz and Salgado, 2016; Ortiz *et al.*, 2017). Thus, the hypothesis of the research is that very few entities of the Mexican Republic were efficient in the usage of their economic and social resources to generate and distribute income, during the period 1990-2015. This has important repercussions on the economic and social well-being of the Mexican population.

For the analysis of the efficiency, the literature offers different methodologies. Data envelopment analysis (DEA), developed initially by Charnes et al. (1978), is a methodology widely used as an alternative to parametric methods (Banker et al., 1984; Bemowski, 1991). In essence, DEA compares an observed production unit with a virtual unit, which obtains the same or more product with the same or lesser number of factors. However, unwanted outputs often are produced together with desirable results. In this sense, Pittman (1983) introduces unwanted outputs in the calculation of productivity indexes, adapting the methodology of Caves *et al.* (1982), and determines the shadow prices of these. The result of this new approach allows to deduce an efficiency measure that, while maximizing the good outputs, minimizes the undesired outputs from a benchmarking process (Serra, 2004). Although the applications of DEA have been mostly in productive units, it is also applied in studies of quality of life, economic well-being, human development and social welfare (Mahlberg and Obersteiner, 2001; Despotis, 2005; Yago et al., 2010; Giménez et al., 2017). Mariano et al. (2015) perform an extensive review of the literature that use DEA for the analysis of human development. According to our knowledge, this work is the first that analyzes the efficiency in the generation of income considering bad outputs from a temporal perspective. For it, the Malmquist-Luenberger (ML) index is used to measure changes in the efficiency, technological change and productivity over time, taking into consideration the undesirable outputs of the productive process (Chung et al., 1997).

The research is structured in five sections: Section 1 analyzes the socioeconomic aspects of economic well-being. In Section 2, the theoretical elements of human development and income distribution are addressed. In Section 3, the methodological features of the generation and distribution of income DEA model are presented. In Section 4, the main results of the DEA model are exposed, indicating the entities that efficiently used their

Income in Mexico

165

resources. Finally, the conclusions are established in Section 5, where the fundamental aspects of the research are highlighted.

2. The income dimension of human development in the entities of Mexico

The study of the dynamics of the income dimension of the HDI shows that during the period 1990-2010, the highest income indices were held by the states of Nuevo León, Mexico City, Chihuahua, Campeche and Sonora. On the other hand, the entities with the lowest income indices were Chiapas, Oaxaca, Guerrero, Tlaxcala and Hidalgo, which is directly related to the behavior of the GDP per capita (UNDP, 2011, 2016). Table 1 shows that GDP per capita had an increase of 58 per cent during the period 1990-2015 as a result of increase in public spending and investment attraction policies. The states of the country with the highest GDP per capita levels are Campeche, Mexico City, Jalisco, Nuevo Leon, Queretaro, Quintana Roo and Tabasco.

The public spending had a major expansion from 33,938m pesos in 1990 to 1,955,597m pesos in 2015. The educational level of the society presented an increase of 45.5 per cent, this is, in 1990, the average level of education was 6.3 years, and in 2015, it was 9.1 years. The employed population grew 116 per cent, excelling Mexico City, State of Mexico, Nuevo León, Jalisco, Puebla and Veracruz (Table 1). The establishment of companies during this stage was incentivized as they went from 736,860 in 1990 to 5,654,014 in 2015, factor that had a direct impact on the generation of jobs and on the remunerations of the population. An element that also presented development was the Gross Capital Formation, Foreign direct investment being the variable that showed the highest growth during the years studied. Specifically, the states of Baja California, Chihuahua, Guanajuato, Jalisco, State of Mexico, Mexico City, Nuevo León, Puebla and Veracruz were the more benefited (INEGI, 2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h). Despite the positive behavior of these indicators, the low impact of the income dimension on the national and state HDI reflects the importance of increasing per capita income levels, as this would lead to higher levels of well-being in the entities of the country.

The concentration of income in Mexico decreased during the period 1990-2015, going from 0.519 in 1990 to 0.469 in 2015. When carrying out the analysis by states, it was observed that Baja California Sur, Tlaxcala, Colima, Baja California and State of Mexico presented the highest levels of income distribution, while Oaxaca, Guerrero, Hidalgo, Querétaro and Campeche were the ones that had the highest concentration of income. These results have, as a background, the poor performance of these last entities in terms of generation and distribution of GDP (Table 2).

3. Methodology

The idea of Farrell (1957), who explains that to measure the efficiency of a set of productive units, it s necessary to know the function of production and the frontier of efficiency, has been applied empirically through two methodologies: stochastic frontiers estimation and DEA measurements. The first involves the use of econometrics, and the second involves linear programming algorithms and benchmarking. DEA is a technique used to measure the comparative efficiency of homogeneous units. Starting from the inputs and outputs, this method provides a classification of the Decision Making Unit (DMU), giving them a relative efficiency score. A DMU is efficient when there is no other (or combination of them) that produces more output, without generating less of the rest and without consuming more inputs. In this case, we speak of an output-oriented model, while in the opposite case, it is called an input-oriented model. DEA models take

JEFAS

25,49

State	1990	1995	2000	2005	2010	2015	Mexico
GDP per capita (Pesos)							
Aguascalientes	7,272	9,145	11,724	14,270	17,368	14,332	
Baja California	8,612	10,825	13,053	15,492	17,445	14,972	
Baja California Sur	10,744	10,256	11,412	14,864	14,823	17,201	
Campeche	10,571	15,308	15,477	20,276	20,819	41,776	
Chiapas	3.641	3,566	3.717	4.760	4,585	5.043	167
Chihuahua	9.253	10.677	13.437	17.149	21.009	14.125	
Colima	8,990	7.683	9.013	11.668	12,433	12.355	
Ciudad de México	19 999	19 291	23 400	30,911	34 413	28 689	
Coahuila	7.319	11.004	12,159	16.377	17.306	18.356	
Durango	6211	6.528	7 425	10,833	10,907	10,419	
Estado de México	7 209	6 1 5 0	6.895	8,557	9453	8 289	
Guanajuato	5 4 5 3	5 473	6 577	8 671	9311	10 727	
Guarraro	4 990	4 386	1 994	6 574	5.9/2	6,090	
Hidalgo	6 285	4,500	5 216	6 0 2 0	6 6 1 1	8 562	
Inline	8,622	7.407	0.120	11 591	11 612	12 228	
Jalisco Michoncón	4.248	1,497	9,120	6640	7 1 9 1	7 992	
Morelea	4,240	4,336	4,990	0,049	7,121	7,023	
Norenit	9,411	0,700	7,070 E 146	7.014	9,074	9,015	
Nayarit Nusara Laén	0,407	4,490	0,140 16 599	7,014	0,070	9,028	
Nuevo Leon	12,677	13,449	16,522	22,185	23,730	22,112	
Daxaca	3,750	3,593	3,850	5,420	5,614	6,260	
Puebla	4,933	5,177	6,626	8,459	9,387	8,133	
Queretaro	6,743	9,208	11,035	13,878	15,690	16,872	
Quintana Roo	18,111	12,516	14,313	17,913	15,093	15,231	
San Luis Potosi	5,583	5,883	6,696	9,532	11,641	11,598	
Sinaloa	7,988	6,116	6,833	9,184	9,040	11,211	
Sonora	7,728	10,004	10,789	14,237	17,607	17,580	
Tabasco	5,461	5,311	5,718	7,938	8,244	16,639	
Tamaulipas	7,161	8,491	10,060	13,840	12,181	13,540	
Tlaxcala	4,310	4,116	4,943	6,223	6,034	7,086	
Veracruz	4,390	5,093	5,150	7,366	8,343	8,982	
Yucatán	6,662	5,740	7,494	9,854	9,644	10,334	
Zacatecas	4,120	4,559	4,755	6,610	7,799	9,172	
Public spending (million	ns of Pesos)	4.400	1 22 1	0.400	10.111	00 5 0 /	
Aguascalientes	268	1,126	4,634	8,403	13,441	22,524	
Baja California	1,907	5,106	21,843	20,764	30,537	42,143	
Baja California Sur	161	776	3,161	5,868	9,556	16,305	
Campeche	276	1,727	6,082	10,186	15,138	23,169	
Chiapas	944	4,927	18,554	34,424	57,418	87,811	
Chihuahua	791	4,223	14,518	26,563	44,555	66,599	
Colima	204	840	3,326	5,746	8,827	16,665	
Ciudad de México	7,707	17,991	56,676	79,624	130,541	210,845	
Coahuila	552	3,252	10,867	19,859	38,234	44,812	
Durango	328	942	7,327	11,706	25,024	33,969	
Estado de México	2,316	13,185	41,977	88,876	171,651	246,145	
Guanajuato	718	3,676	15,484	28,192	48,465	81,367	
Guerrero	602	1,691	14,382	23,673	39,798	55,580	
Hidalgo	320	2,309	9,324	17,806	27,397	46,139	
Jalisco	2,976	11,452	25,587	44,201	73,161	96,809	Table 1
Michoacán	558	3,525	15.443	27,409	48.321	62.741	Table 1.
Morelos	378	1,389	6,793	11.724	19.544	28,242	Data of the income
	5.0	_,000	-,	,•=+		(continued)	factor in Mexico, 1990-2015

JEFAS 25,49

168

Table 1.

State	1990	1995	2000	2005	2010	2
Nayarit	272	1,309	5,596	8,920	16,517	2
Nuevo León	3,325	9,149	21,315	34,393	59,417	8
Oaxaca	1,495	7,631	14,733	25,974	51,711	7
Puebla	671	4.298	19.301	31.532	54,491	8
Querétaro	299	2.221	6.823	12.398	20.841	3
Quintana Roo	212	1 021	5105	10,176	23,018	3
San Luis Potosí	367	2,356	9 761	18,318	27 761	4
Sinaloa	679	3128	10,654	18 249	35,340	4
Sonora	981	3 4 6 4	11 631	21 530	44 105	5
Tabasco	1 256	3 4 2 3	14 023	28,068	35.013	4
Tamaulinas	766	3 302	13 517	22,000	13 696	5
Tlavcala	202	681	4 820	7 680	16.458	2
Vorocruz	1 664	6 268	28,020	47.807	10,400	11
Vucatán	227	1.020	26,000	12.846	90,322 21 769	211
Tucatall Zacataca	557 914	1,000	6 210	12,040	21,700	ე
Zacatecas	314	1,439	0,310	11,241	24,748	3
Degree of schooling (ye	ars)	7.0	7.0	07	0.46	
Aguascalientes	6.7 7 F	7.3	7.9	8.7	9.46	
Baja California	7.5	7.9	8.2	8.9	9.54	
Baja California Sur	7.4	7.9	8.4	8.9	9.69	
Campeche	5.8	6.5	7.2	7.9	8.53	
Chiapas	4.2	4.8	5.6	6.1	6.73	
Chihuahua	6.8	7.3	7.8	8.3	9.01	
Colima	6.6	7.1	7.7	8.4	9.12	
Ciudad de México	8.8	9.2	9.7	10.2	10.81	
Coahuila	7.3	7.8	8.5	9	9.79	
Durango	6.2	6.8	7.4	8	8.74	
Estado de México	7.1	7.6	8.2	8.7	9.48	
Guanajuato	5.2	5.8	6.4	7.2	7.9	
Guerrero	5	5.6	6.3	6.8	7.55	
Hidalgo	5.5	6	6.7	7.4	8.21	
Jalisco	6.5	7	7.6	8.2	8.98	
Michoacán	5.2	5.8	6.4	6.9	7.62	
Morelos	6.8	7.3	7.8	8.4	9.17	
Nayarit	6.1	6.7	7.3	8	8.72	
Nuevo León	8	8.4	8.9	9.5	10.17	
Oaxaca	4.5	5.1	5.8	6.4	7.08	
Puebla	5.6	6.2	6.9	7.4	8.14	
Querétaro	6.1	6.8	7.7	8.3	9.26	
Quintana Roo	6.3	7.1	7.9	8.5	9.3	
San Luis Potosí	5.8	6.4	7	7.7	8.51	
Sinaloa	67	71	76	85	9.28	
Sonora	73	78	82	89	96	
Tabasco	59	65	7.2	8	878	
Tamaulinas	7	75	81	87	948	
Tlavcala	65	7.5	77	83	012	
Verocruz	5.5	6	66	7.9	7.84	
Vucatán	5.0	62	6.0	1.4	1.04 8.26	
i ucatali	5.7	0.0	0.9 6 F	7.0	0.20 7.80	
Vacatoona	D (1	M			/	

Mexico	2015	2010	2005	2000	1995	1990	State
						bersons)	Employed personnel (j
	518,514	460,428	406,782	331,083	292,184	212,365	Aguascalientes
	1,512,261	1,318,160	1,181,866	906,369	785,060	565,471	Baja California
1.00	357,412	258,651	225,302	169,014	142,847	102,763	Baja California Sur
169	394,634	345,981	326,946	243,323	214,141	149,983	Campeche
	1,898,952	1,722,617	1,552,418	1,206,621	1,101,341	854,159	Chiapas
	1,539,769	1,276,383	1,328,974	1,117,747	1,041,766	773,100	Chihuahua
	340,008	289,025	256,986	199,692	178,907	133,474	Colima
	4,147,971	3,985,184	3,957,832	3,582,781	3,449,206	2,884,807	Ciudad de México
	1,247,782	1,040,436	965,240	822,686	724,729	586,165	Coahuila
	724,360	576,977	556,402	443,611	402,351	347,275	Durango
	7,065,112	6,195,622	5,553,048	4,462,361	3,908,623	2,860,976	Estado de México
	2,381,939	1,961,002	1,887,033	1,460,194	1,304,041	1,030,160	Guanajuato
	1.390.303	1.301.453	1.164.045	888.078	776.577	611.755	Guerrero
	1.208.638	932.139	926.353	728,726	690.874	493,315	Hidalgo
	3,424,781	3,073,650	2,870,720	2,362,396	2,180,447	1,553,202	Jalisco
	1.903.548	1.602.495	1.595,979	1.226.606	1.105.816	891,873	Michoacán
	778,745	719,727	663,781	550,831	504,109	348,357	Morelos
	544.513	430.055	408.313	318.837	286.693	233,000	Navarit
	2.225.108	1.975.245	1.832.395	1.477.687	1.317.418	1.009.584	Nuevo León
	1.621.204	1.450.587	1.408.055	1.066.558	955.626	754,305	Oaxaca
	2,564,998	2.358.045	2.161.852	1.665.521	1.446.039	1.084.316	Puebla
	766,182	683,693	651,557	479,980	428,651	288,994	Querétaro
	738,156	655.226	518.040	348,750	259.071	163,190	Quintana Roo
	1.116.158	979.539	935,462	715,731	616.679	529,016	San Luis Potosí
	1.290.410	1.110.501	1.139.861	880.295	818.932	660,905	Sinaloa
	1.309.197	972.978	957.211	810.424	751.405	562,386	Sonora
	907.599	762.850	731.237	600.310	546.794	393,434	Tabasco
	1,491,450	1.308.505	1.271.428	1.013.220	903.894	684,550	Tamaulipas
	531.163	439.084	430.958	328.585	290.914	196.609	Tlaxcala
	3.092.678	2.852.644	2,701,735	2.350.117	2.145.521	1.742.129	Veracruz
	977.644	899.766	788.841	618.448	531.197	407.337	Yucatán
	600,148	541,914	524,128	353,628	267,925	294,458	Zacatecas

Banco de México (Banxico) (2018), Banco Mundial (2018) and Secretaría de Educación Pública (SEP) (2018)

Table 1.

advantage of the know-how of the DMUs and once determined who is efficient and who is not, set improvement goals for the inefficient, and based on the achievements of the efficient (Bemowski, 1991; Navarro and Torres, 2003; Serra, 2004). In our case, the model was oriented to the output because the ultimate goal of economic well-being is to maximize income and minimize the concentration of it.

Due to the existence of undesirable outputs, for the calculation of the annual efficiency levels, a model based on a directional distance function (DDF) was used (Färe *et al.*, 1994), precisely with the objective to maximize income while minimizing the concentration of it, given the amount of available resources. The DDF models has been widely used in efficiency studies (Sueyoshi and Goto, 2010; Färe *et al.*, 2005; Watanabe and Tanaka, 2007). The mathematical expression of it is as follows:

JEFAS
25,49

IEEAC							
25.49	Sate	1990	1995	2000	2005	2010	2015
-) -	National	0.519	0.518	0.516	0.499	0.482	0.469
	Aguascalientes	0.488	0.471	0.454	0.481	0.507	0.451
	Baja California	0.476	0.461	0.446	0.476	0.506	0.432
	Baja California Sur	0.458	0.475	0.493	0.489	0.485	0.447
1 = 0	Campeche	0.504	0.512	0.520	0.517	0.514	0.484
170	Chiapas	0.543	0.542	0.542	0.541	0.541	0.512
	 Chihuahua 	0.509	0.508	0.507	0.490	0.473	0.465
	Colima	0.536	0.520	0.505	0.511	0.517	0.507
	Ciudad de México	0.510	0.487	0.465	0.470	0.476	0.460
	Coahuila	0.500	0.506	0.511	0.465	0.420	0.440
	Durango	0.486	0.482	0.478	0.474	0.470	0.431
	Estado de México	0.520	0.509	0.498	0.483	0.468	0.438
	Guanajuato	0.519	0.522	0.525	0.479	0.433	0.513
	Guerrero	0.542	0.545	0.549	0.532	0.516	0.480
	Hidalgo	0.528	0.530	0.531	0.498	0.465	0.467
	Jalisco	0.560	0.542	0.523	0.492	0.461	0.445
	Michoacán	0.543	0.523	0.502	0.496	0.489	0.438
	Morelos	0.532	0.547	0.561	0.491	0.420	0.452
	Nayarit	0.501	0.497	0.493	0.490	0.488	0.471
	Nuevo León	0.499	0.484	0.469	0.483	0.498	0.515
	Oaxaca	0.517	0.541	0.565	0.537	0.509	0.503
	Puebla	0.563	0.559	0.554	0.518	0.481	0.505
	Querétaro	0.583	0.556	0.529	0.508	0.487	0.484
	Quintana Roo	0.538	0.554	0.571	0.524	0.477	0.464
	San Luis Potosí	0.551	0.548	0.545	0.526	0.507	0.463
	Sinaloa	0.515	0.498	0.481	0.474	0.466	0.457
	Sonora	0.497	0.496	0.495	0.487	0.479	0.487
	Tabasco	0.540	0.530	0.520	0.499	0.478	0.457
	Tamaulipas	0.522	0.511	0.500	0.474	0.449	0.476
	Tlaxcala	0.485	0.501	0.518	0.471	0.425	0.395
T-11-0	Veracruz	0.538	0.548	0.558	0.546	0.533	0.489
Table 2 .	Yucatán	0.526	0.558	0.590	0.526	0.462	0.481
The coefficient of	Zacatecas	0.492	0.508	0.523	0.522	0.521	0.499
Gini in Mexico,							
1990-2015	Source: Own elaborati	ion based on da	ta published b	y the CONEVA	L (2018a, 2018).	b)	

$$Max \beta$$
s.t
$$\sum_{k=1}^{K} \lambda_{k} y^{t}_{km} \ge y^{ot}_{m} (1+\beta) \quad m = 1...M$$

$$\sum_{k=1}^{K} \lambda_{k} b^{t}_{kh} \le b^{ot}_{h} (1-\beta) \quad h = 1...H$$

$$\sum_{k=1}^{K} \lambda_{k} x^{t}_{kn} \le x^{ot}_{n} \quad n = 1...N$$

$$\beta \ge 0; \lambda_{k} \ge 0 \quad k = 1...K$$
(1)

where β is the maximum increase and reduction achievable simultaneously in the good and bad outputs, y_{km}^t represents the output *m* of the unit *k* in the year *t*, b_{kh}^t the bad output *h* of the unit or country *k* in the year *t*, x_{kn}^t the input *n* used by the country *k* in the year *t* and y_{mt}^{ot} , b_{h}^{ot} and x_{kn}^{ot} denote the observed levels of good and bad outputs and inputs for the country evaluated in the year *t*. The linear mathematic equation (1) is solved for each unit analyzed.

For determining the evolution of efficiency and productivity over time, the ML index is used, which has its origins in the Malmquist index (MI) (Caves *et al.*, 1982; Chung *et al.*, 1997). The MI can explain the change in the total productivity of the factors as a product of the efficiency change or catching up and technological change. Chung *et al.* (1997) modified the MI to apply it to the case of DDF. The new index called ML was decided to use in this investigation as undesirable variables were considered in the income dimension of the HDI. The mathematical expression of the index is as follows (Chung *et al.*, 1997):

$$ML^{t,t+1} = \left(\frac{\left(1 + D^{t}(x^{t}, y^{t}, b^{t})\right)}{\left(1 + D^{t}(x^{t+1}, y^{t+1}, b^{t+1})\right)} \times \frac{\left(1 + D^{t+1}(x^{t}, y^{t}, b^{t})\right)}{\left(1 + D^{t+1}(x^{t+1}, y^{t+1}, b^{t+1})\right)}\right)^{1/2}$$
(2)

where $D^t(x^t, y^t, b^t) = \max\left(\beta | (y^t + \beta g_y^t, b^t - \beta g_b^t) \in P(x^t)\right)$ is the DDF defined for each unit analyzed taking its data for year $t(x^t, y^t, b^t)$ and as a reference the set of production possibilities for the same year $P(x^t)$. In an analogous way, it could be defined, for example, $D^{t+1}(x^t, y^t, b^t) = \max\left(\beta | (y^t + \beta g_y^t, b^t - \beta g_b^t) \in P(x^{t+1})\right)$. In this case, the DDF would take the data for year $t(x^t, y^t, b^t)$ for each unit analyzed and, as a reference, the set of production possibilities for year t + 1, that is, $P(x^{t+1})$. In the latter case, the DDF is crossed in the sense that it uses the data of one year for the analyzed units and projects them on the production possibility frontier of a different year. A value of $ML^{t,t+1}$ greater than 1 would mean that there has been an improvement in productivity between years t and t + 1, while a value less than 1 would be interpreted in the opposite way. Any of the DDF needed for calculating the ML index can be calculated using equation (1).

Equation (2) can be decomposed using simple algebraic manipulation, such as:

$$ML^{t,t+1} = MLEFF^{t,t+1} \ x \ MLTECH^{t,t+1}$$
(3)

where:

$$MLEFF^{t,t+1} = \frac{1 + D^t(x^t, y^t, b^t)}{1 + D^{t+1}(x^{t+1}, y^{t+1}, b^{t+1})}$$
(4)

represents the efficiency change or catch up, that is, if the unit analyzed has approached or moved away in the period with respect to the frontier. If it has been approximated, equation (4) takes a value greater than 1 and less than 1 otherwise. While:

$$MLTECH^{t,t+1} = \left[\frac{\left[1 + D^{t+1}(x^{t}, y^{t}, b^{t})\right] x \left[1 + D^{t+1}(x^{t+1}, y^{t+1}, b^{t+1})\right]}{\left[1 + D^{t}(x^{t}, y^{t}, b^{t})\right] x \left[1 + D^{t}(x^{t+1}, y^{t+1}, b^{t+1})\right]}\right]^{1/2}$$
(5)

Income in Mexico represents technological change, that is, if the frontier has improved or worsened over the period. In case of improvement (positive technological change), equation (5) takes a value greater than 1, and less than 1 otherwise.

For the empirical application of the model in this case, it was used as a good output the GDP per capita and as a bad output the concentration of the income, measured by the Cg. This due to the theoretical representativeness that these variables have to explain the economic well-being of a country. The selection of inputs was based on the theoretical pillars that explain the behavior of the components of the HDI income dimension. In this sense, the postulates of the UNDP (2011, 2016, 2018a); Mahlberg and Obersteiner (2001), Arcelus *et al.* (2006); Despotis (2005); Yago *et al.* (2010); Emrouznejad *et al.* (2010); Blancas and Domínguez-Serrano (2010); Jahanshahloo *et al.* (2011) and Blancard and Hoarau (2011, 2013) were analyzed, arriving at the conclusion that the indicators that explain the behavior of the income dimension of human development are the average annual change in the consumer price index, inequality index, exports, imports, foreign direct investment, total debt service, development assistance, public spending, electricity consumption per capita, proportion of the population that uses the internet, degree of schooling, economically active population, employed personnel, economic units, gross capital formation, remunerations and salary.

Given the availability of statistical information for the states of the Mexican Republic, the number of indicators was reduced. With these data, a statistical analysis was carried out by determining fist a matrix of correlations. Subsequently, factorial analysis was carried out, which is very useful for depurate the correlation matrix. The factorial analysis, under the concept of main components, passed the tests of Kaiser–Meyer–Olkin (KMO), with values higher than 0.70, and the test of sphericity of Bartlett, with a high result and with a small level of significance. Due to the positive results in the tests, we proceeded with the factorial analysis, and a matrix of communalities was obtained, which showed that the inputs that best explain the HDI income dimension are public expenditure, degree of schooling and employed personnel (Tables 3-6).

The statistical information of these variables was possible to obtain it through the databases of the Instituto Nacional de Estadística, Geografía e Informática de México, the Secretaría de Educación Pública de México, the Consejo Nacional de Población, the Consejo Nacional de Evaluación de la Política de Desarrollo Social, the Banco de México and the Human Development Reports of UNDP.

Variables	GP_I	GraEsc_I	EP_I	EU_I	MW_I	Rem_I	GDP_O
Correlations							
GP I	1	0.53	0.78	0.83	0.63	0.8	0.23
GraEsc_I	0.53	1	0.3	0.33	0.75	0.57	0.7
EP_I	0.78	0.3	1	0.93	0.26	0.82	0.06
EU_I	0.83	0.33	0.93	1	0.41	0.8	0.03
MW_I	0.63	0.75	0.26	0.41	1	0.41	0.36
Rem_I	0.8	0.57	0.82	0.8	0.41	1	0.43
GDP_O	0.23	0.7	0.06	0.03	0.36	0.43	1

Table 3. Matrix of correlations Notes: GDP: GDP *per capita*; GP: total public expenditure; GraEsc: average grade of schooling; EP: employed personnel; EU: economic Units; MW: minimum Wage; Rem: remuneration Source: Own elaboration based on the INEGI (2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h), Banco de México (Banxico) (2018), Banco Mundial (2018) and Secretaría de Educación Pública (SEP) (2018)

IEFAS

25,49

4. Analysis and discussion of results The states considered efficient in the use of their resources to ge same time reduce the concentration of income, during the peri California Sur, Campeche and Mexico City. On the other hand, O León stand out as entities that approach efficiency (Table 7). Thes endowment of factors that these states have and the level of	enerate income and at the iod 1990-2015, were Baja Quintana Roo and Nuevo se results are related to the fife of their population.	Income in Mexico
Specifically, it can be seen in Tables 1 and 2 that Baja California S	Sur, Campeche and Mexico	173
Sampling adaptation measure of KMO	0.72667374	
Approximate Chi-square Gl.	1,227.8515 21	

Sig.

Variables

GraEsc_I

GP_I

EP I

MW_I

Covariance anti-image

GP_I

0.199

0.023

-0.196

-0.129

Source: Own elaboration based on the INEGI (2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h), Banco de México (Banxico) (2018), Banco Mundial (2018) and Secretaría de Educación Pública (SEP) (2018)

Table 4. KMO and Bartlett test

6.531E-247

GraEsc_I EP_I MW_I GDP_O 0.023 -0.039-0.196-0.1290.204 -0.062-0.151-0.210-0.0620.290 0.132 0.083 -0.1510.1320.256 0.118 18

Correlation and	ti-image				
GP_I	-0.039	-0.210	0.083	0.118	0.418
GraEsc_I	0.566	0.116	-0.814	-0.573	-0.134
EP_I	0.116	0.582	-0.254	-0.660	-0.718
MW_I	-0.814	-0.254	0.428	0.483	0.238
а		Sam	ple adaptation meas	sure	

Source: Own elaboration based on the INEGI (2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h), Banco de México (Banxico) (2018), Banco Mundial (2018) and Secretaría de Educación Pública (SEP) (2018)

Table 5. Anti-image matrix

	Component				
Variables	1	2			
GP_I	0.34	0.9			
GraEsc_I	0.9	0.3			
EP_I	0.01	0.93			
MW_I	0.71	0.43			
Extraction method: analysis of main	n components				
Rotation method: Varimax standard	dization with Kaiser				
а	The rotation converged	1 in 3 iterations			
Source: Own elaboration based of	on the INEGI (2018a, 2018b, 2018c, 2018d, 2018	Se, 2018f, 2018g, 2018h),			
Banco de Mexico (Banxico) (2018), I	Sanco Mundial (2018) and Secretaria de Educació	on Publica (SEP) (2018)			

Table 6.

Matrix of

components

JEFAS 25,49	DMU	1990	1995	2000	2005	2010	2015
,	Aguascalientes	0.720	0.852	0.952	0.877	0.932	0.684
	Baja California	0.757	0.864	0.921	0.862	0.876	0.701
	Baja California Sur	0.942	1.000	1.000	1.000	1.000	0.723
	Campeche	0.811	1.000	1.000	1.000	1.000	1.000
	Chiapas	0.594	0.587	0.568	0.567	0.559	0.557
174	Chihuahua	0.765	0.829	0.894	0.872	0.949	0.676
	Ciudad de México	1.000	1.000	1.000	1.000	1.000	0.861
	Coahuila	0.714	0.849	0.869	0.898	0.921	0.741
	Colima	0.749	0.809	0.857	0.855	0.908	0.641
	Durango	0.688	0.741	0.743	0.773	0.757	0.640
	Estado de México	0.690	0.653	0.637	0.635	0.640	0.610
	Guanajuato	0.652	0.658	0.661	0.657	0.662	0.621
	Guerrero	0.633	0.629	0.611	0.606	0.580	0.573
	Hidalgo	0.675	0.634	0.640	0.638	0.628	0.606
	Jalisco	0.709	0.675	0.700	0.679	0.674	0.674
	Michoacán	0.613	0.623	0.616	0.605	0.601	0.603
	Morelos	0.761	0.703	0.719	0.763	0.734	0.615
	Nayarit	0.690	0.648	0.664	0.670	0.699	0.611
	Nuevo León	0.854	0.913	0.987	0.971	0.949	0.748
	Oaxaca	0.599	0.588	0.573	0.577	0.576	0.572
	Puebla	0.627	0.636	0.641	0.633	0.638	0.593
	Querétaro	0.671	0.771	0.842	0.832	0.873	0.702
	Quintana Roo	1.000	1.000	0.999	0.934	0.858	0.690
	San Luis Potosí	0.649	0.671	0.682	0.694	0.741	0.645
	Sinaloa	0.726	0.691	0.705	0.704	0.674	0.642
	Sonora	0.724	0.820	0.829	0.820	0.889	0.709
	Tabasco	0.644	0.654	0.656	0.670	0.670	0.711
Table 7	Tamaulipas	0.699	0.763	0.792	0.811	0.742	0.665
Efficiency in Maxico	Tlaxcala	0.631	0.646	0.653	0.658	0.651	0.604
with output	Veracruz	0.611	0.624	0.592	0.603	0.608	0.606
with output	Yucatán	0.686	0.671	0.734	0.719	0.724	0.624
constant scale	Zacatecas	0.623	0.646	0.639	0.643	0.661	0.606
returns, 1990-2015	Source: Own elaborati	on based on the	e data of Table	s 1 and 2			

City were characterized for occupying the first positions in terms of GDP per capita, public expenditure, employed personnel and average degree of schooling, as well as having the lowest levels of income concentration. Behavior that directly affected the position that they occupied in the national ranking of HDI (UNDP, 2011, 2016, 2018b). Emphasizing with this the preponderant position that they occupy within the regional dynamics of Mexico, being the entities that historically stand out in the country for their socioeconomic dynamism (Garza and Schteingart, 2010; Tello, 2010; Quiroz and Salgado, 2016; Ortiz *et al.*, 2017). Thus, in this case, the efficient use of resources corresponds with the behavior of the main socioeconomic indicators and to the level of human development displayed by these entities during the study period.

The results of Table 7 also show that entities such as Oaxaca, Chiapas, Michoacán, Guerrero and Veracruz were the most inefficient in generating economic well-being. These states did not use efficiently their resources to increase their GDP per capita and, at the same time, reduce the concentration of income in the period 1990-2015. Performance that is linked to the unequal allocation of resources (public expenditure, employed personnel and average

grade of schooling) among the entities of the country. Being so historically the most lagging states in economic and social terms of Mexico (INEGI, 2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g, 2018h); since historically, they have been characterized as being the most lagging in economic and social terms (Garza and Schteingart, 2010; Tello, 2010; Quiroz and Salgado, 2016; Ortiz et al., 2017). Behavior that has been reflected in the three elements or dimensions of the health, education and income (HDI) (UNDP, 2011, 2016, 2018b).

Table 8 shows that the entities rated as efficient in the generation of economic well-being (Baja California Sur, Campeche and Mexico City) did not have a similar performance in terms of productivity, during the period 1990-2015. In the case of Baja California Sur, Campeche and Mexico City, the ML index worsened. That is, these states, despite being efficient, did not present substantial improvements in the efficient use of their resources. In general, Table 8 shows that during the period 1990-2015, the 32 entities worsened the use of their resources to generate and distribute income. This deterioration is consistent with the low levels of economic well-being that place Mexico in the ranking of countries with medium degree of HDI (UNDP, 2018b).

DMU	Catch up	Technological change	ML index	Туре	
Aguascalientes	0.949	0.259	0.246	Worsened	
Baja California	0.925	0.646	0.598	Worsened	
Baja California Sur	0.767	0.194	0.149	Worsened	
Campeche	1.233	0.260	0.321	Worsened	
Chiapas	0.937	0.559	0.524	Worsened	
Chihuahua	0.884	0.398	0.352	Worsened	
Ciudad de México	0.861	1.022	0.880	Worsened	
Coahuila	1.039	0.376	0.390	Worsened	
Colima	0.856	0.202	0.173	Worsened	
Durango	0.930	0.293	0.273	Worsened	
Estado de México	0.884	0.697	0.616	Worsened	
Guanajuato	0.953	0.437	0.417	Worsened	
Guerrero	0.905	0.399	0.361	Worsened	
Hidalgo	0.898	0.276	0.248	Worsened	
Jalisco	0.950	0.760	0.722	Worsened	
Michoacán	0.984	0.419	0.412	Worsened	
Morelos	0.809	0.264	0.213	Worsened	
Nayarit	0.885	0.258	0.228	Worsened	
Nuevo León	0.876	0.760	0.666	Worsened	
Oaxaca	0.956	0.703	0.672	Worsened	
Puebla	0.947	0.428	0.405	Worsened	
Querétaro	1.046	0.276	0.289	Worsened	
Quintana Roo	0.690	0.172	0.119	Worsened	
San Luis Potosí	0.994	0.317	0.315	Worsened	
Sinaloa	0.884	0.380	0.336	Worsened	
Sonora	0.979	0.483	0.473	Worsened	
Tabasco	1.103	0.617	0.681	Worsened	
Tamaulipas	0.951	0.423	0.402	Worsened	
Tlaxcala	0.958	0.310	0.297	Worsened	
Veracruz	0.992	0.711	0.705	Worsened	
Yucatán	0.909	0.283	0.257	Worsened	T 11
Zacatecas	0.974	0.328	0.319	Worsened	ML index in Mexic
Source: Own elaborati	ion based on the da	ta of Tables 1 and 2			2000-20

Income in Mexico

175

JEFAS 25,49

These results show that the states of the country that received the most resources in the period 1990-2015 (Campeche, Jalisco, Nuevo Leon, Queretaro, Quintana Roo, Tabasco and Mexico City) were not always the most efficient in the generation and distribution of income. Similarly, it is observed that despite the general increase in the efficient use of resources in the country, it is necessary to promote public policies that encourage this type of management and promote investment, employment and education in each of the entities of the Mexican Republic. This is because the efficient use of economic and social resources would generate economic well-being and, therefore, contribute to a higher level of human development in Mexico. Causal relationship that had already been exposed by authors such as Martić and Savić (2001); Arcelus et al. (2006), Stimson et al. (2006), Halkos and Tzeremes (2010), Emrouznejad et al. (2010), Blancas and Domínguez-Serrano (2010), Jahanshahloo et al. (2011), Blancard and Hoarau (2011, 2013) and Poveda (2011). Thus, the efficiency results of this study match with the theoretical arguments that indicate that the efficient use of resources contributes significantly to the human development of the countries (Mahlberg and Obersteiner, 2001; Despotis, 2005; Yago et al., 2010; Giménez et al., 2017). As with the empirical evidence that highlights that the lack of economic growth and the presence of income concentration in Mexico; as a consequence of the cheapening of the labor force, the absence of employment for the trained personnel, the little social mobility, the growing public debt, and the absence of a social and labor policy; perpetuate poverty and marginalization (Cortés, 2003; Vargas, 2009; Tello, 2010; Torres and Rojas, 2015; Quiroz and Salgado, 2016; Ortiz et al., 2017).

5. Conclusions

Human development in Mexico as a goal of economic development models has been partial as, on one hand, it exists a positive evolution in terms of health and education, coupled with positive, but not sufficient, growth rates of employed personnel, public expenditure and GDP per capita. On other hand, there are important lags in social matters such as marginalization and concentration of income. In regional terms, there is an uneven development of the entities in Mexico. States such as Campeche, Jalisco, Nuevo Leon, Queretaro, Quintana Roo, Tabasco, Puebla and Mexico City have high levels of well-being, while, others like Oaxaca, Guerrero, Michoacán and Chiapas are distinguished by their economic backwardness.

Human development seeks to expand the capabilities of the human being, adding to the economic factor the health and education dimensions to have a holistic vision of social welfare. The concentration of income, understood as the unequal distribution of the product generated by a society among its members, is directly related to the concept of human development from the income dimension as economic well-being is not only the generation of income but also the way in which it is distributed among the population.

Based on the DEA methodology, it was determined how efficient were Mexican entities in the use of the resources to generate income and, at the same time, reduce the concentration of it during the period 1990-2015. The model was elaborated with constant returns to scale, oriented to the output and including a bad output. The output of the model was the GDP per capita, the bad output the Cg, and the inputs were the public expenditure, the degree of schooling and the employed personnel.

Oaxaca, Chiapas, Michoacán, Guerrero and Veracruz were the most inefficient entities in the generation of economic well-being, while, Baja California Sur, Campeche and Mexico City had the highest efficiencies, that is, with the resources, they possess were efficient in the generation of income and in the reduction of the concentration of it. The ML index in this case reflected that all the states presented a negative evolution in their efficiency and productivity over the period studied.

The results obtained in this study show that the states that received the most economic resources (Campeche, Jalisco, Nuevo León, Querétaro, Quintana Roo, Tabasco and Mexico City) were not always the most efficient in the generation and distribution of income, making evident the need for a more adequate use of resources, through the establishment of public policies focused by entity for the promotion of investment, employment, education and the reduction of inequity.

References

- Acevedo, M. (1986), "La pobreza en Colombia: una medida estadística", *El Trimestre Económico*, Vol. 53 No. 2, pp. 315-340.
- Alkire, S. and Foster, J. (2011), "Counting and multidimensional poverty measurement", *Journal of Public Economics*, Vol. 95 Nos 7/8, pp. 476-487.
- Arcelus, F., Sharma, B. and Srinivasan, G. (2006), "The human development index adjusted for efficient resource utilization", in UNU-WIDER (Ed.), *Inequality, Poverty and Well-being*, Palgrave Macmillan, Finland, pp. 177-193.
- Banker, R., Charnes, A. and Cooper, W. (1984), "Some models for estimating technical and scale inefficiencies in data envelopment analysis", *Management Science*, Vol. 30 No. 9, pp. 1078-1092.
- Banco de México (Banxico) ((2018),), "Índice nacional de precios al consumidor y sus componentes mensuales", available at: www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction. do?sector=8&accion=consultarCuadro&idCuadro=CP154&locale=es (accessed 26 March 2018).
- Banco Mundial (2018), "Indicadores del desarrollo mundial", available at: http://databank. bancomundial.org/data/reports.aspx?source=2&series=NE.EXP.GNFS.ZS&country= (accessed 26 March 2018).
- Bemowski, K. (1991), "The benchmarking bandwagon", Quality Progress, Vol. 24 No. 1, pp. 19-24.
- Blancard, S. and Hoarau, J.F. (2011), "Optimizing the new formulation of the United Nations human development index: an empirical view from data envelopment analysis", *Economics Bulletin*, Vol. 31 No. 1, pp. 989-1003.
- Blancard, S. and Hoarau, J.F. (2013), "A new sustainable human development indicator for small island developing states: a reappraisal from data envelopment analysis", *Economic Modelling*, Vol. 30, pp. 623-635.
- Blancas, F.J. and Domínguez-Serrano, M. (2010), "Un indicador sintético DEA para la medición de bienestar desde una perspectiva de género", *Revista Investigación Operacional*, Vol. 31 No. 3, pp. 225-239.
- Carrillo, M. and Vázquez, H. (2005), "Desigualdad y polarización en la distribución del ingreso salarial en México", Problemas del desarrollo. Revista Latinoamericana de Economía, Vol. 36 No. 141, pp. 109-130.
- Caves, D., Christensen, L. and Diewert, E. (1982), "The economic theory of index numbers and the measurement of input, output, and productivity", *Econometrica*, Vol. 1 No. 50, pp. 1393-1414.
- Charnes, A., Cooper, W. and Rhodes, E. (1978), "Measuring efficiency of decision making units", *European Journal of Operational Research*, Vol. 2 No. 6, pp. 429-444.
- Chung, Y., Färe, R. and Grosskopf, S. (1997), "Productivity and undesirable outputs: a directional distance function approach", *Journal of Environmental Management*, Vol. 51 No. 3, pp. 229-240.
- Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) (2018a), "Evolución de las dimensiones de la pobreza 1990-2012", available at: www.coneval.org.mx/Medicion/Paginas/ Evolucion-de-las-dimensiones-de-la-pobreza-1990-2010-.aspx (accessed 9 June 2018).

Income in Mexico

JEFAS 2549	CONEVAL (2018b), "Medición de la pobreza", available at: www.coneval.org.mx/Medicion/MP/ Paginas/AE_pobreza_2016.aspx (accessed 9 June 2018).
20,10	Cortés, F. (2003), "El ingreso y la desigualdad en su distribución", <i>México: 1970-2000. Papeles de Población</i> , Vol. 9 No. 35, pp. 137-152.
	Despotis, D. (2005), "A reassessment of the human development index via data envelopment analysis", Journal of the Operational Research Society, Vol. 56 No. 8, pp. 969-980.
178	Emrouznejad, A., Osman, I. and Anouze, A. (2010), "Performance management and measurement with data envelopment analysis", Proceedings of the 8th International Conference of DEA, American University of Beirut, Lebanon.
	Färe, R., Grosskopf, S. and Lovell, C.A.K. (1994), <i>Production Frontiers</i> , Cambridge University Press, Cambridge, MA.
	Färe, R., Grosskopf, S., Noh, D. and Weber, W. (2005), "Characteristics of a polluting technology: theory and practice", <i>Journal of Econometrics</i> , Vol. 126 No. 2, pp. 469-492.
	Farrell, M. (1957), "The measurement of productive efficiency", <i>Journal of the Royal Statistical Society</i> , Vol. 120 No. 3, pp. 253-290.
	Garza, G. and Schteingart, M. (2010), <i>Los grandes problemas de México. Desarrollo Urbano y Regional</i> , 1st ed., El Colegio de México, México.
	Giménez, V., Ayvar-Campos, F. and Navarro-Chávez, J.C.L. (2017), "Efficiency in the generation of social welfare in Mexico: a proposal in the presence of bad outputs", <i>Omega</i> , Vol. 69, pp. 43-52.
	Gradín, C. and del Rio, C. (2001), <i>Desigualdad, pobreza y polarización en la distribución de la renta en Galicia</i> , Instituto de Estudios Económicos de Galicia, Spain.
	Griffin, K. (2011), "Desarrollo humano: origen, evolución e impacto", in Ibarra, P. and Unceta, K. (Eds), Ensayos Sobre el Desarrollo Humano, Icaria, Spain, pp. 25-40.
	Halkos, G. and Tzeremes, N.G. (2010), "Measuring regional economic efficiency: the case of greek prefectures", <i>The Annals of Regional Science</i> , Vol. 45 No. 3, pp. 603-632.
	Harttgen, K. and Klasen, S. (2012), "Household-based human development index", <i>World Development</i> , Vol. 40 No. 5, pp. 878-899.
	Hicks, D. (1997), "The inequality-adjusted human development index: a constructive proposal", World Development, Vol. 25 No. 8, pp. 1283-1298.
	Instituto Nacional de Estadística y Geografía (INEGI) (2018a), "Banco de Información Económica", available at: www.inegi.org.mx/sistemas/bie/ (accessed 26 March 2018).
	INEGI (2018b), "Censos y conteos de población y vivienda", available at: www.inegi.org.mx/est/ contenidos/Proyectos/ccpv/default.aspx (accessed 26 March 2018).
	INEGI (2018c), "Encuesta intercensal 2015", available at: www.beta.inegi.org.mx/proyectos/ enchogares/especiales/intercensal/default.html (accessed 26 March 2018).
	INEGI (2018d), "Ingresos y egresos públicos", available at: www.inegi.org.mx/sistemas/olap/Proyectos/ bd/continuas/finanzaspublicas/FPEst.asp?s=est&c=11288&proy=efipem_fest (accessed 26 March 2018).
	INEGI (2018e), "Ingresos y egresos públicos", available at: www.inegi.org.mx/sistemas/olap/Proyectos/bd/ continuas/finanzaspublicas/FinanzasEstDF.asp?s=est&c=11290&proy=efipem_festdf (accessed 26 March 2018).
	INEGI (2018f), "Población ocupada", available at: www.inegi.org.mx/est/lista_cubos/consulta.aspx?p= encue&c=4 (accessed 26 March 2018).
	INEGI (2018g), "Grado promedio de escolaridad de la población de 15 años y más años por entidad federativa según sexo", available at: www.beta.inegi.org.mx/temas/educacion/ (accessed 26 March 2018).
	INEGI (2018h), "Establecimientos", available at: www.beta.inegi.org.mx/proyectos/ce/2014/ (accessed 26 March 2018).

- Jahanshahloo, G.R., Hosseinzadeh, L., Noora, A. and Parchikolaei, B. (2011), "Measuring human development index based on Malmquist productivity index", *Applied Mathematical Sciences*, Vol. 5 No. 62, pp. 3057-3064.
- León, M. (2002), "Desarrollo humano y desigualdad en el Ecuador", Gestión, Vol. 102, pp. 1-7.
- López-Calva, L. Rodríguez-Chamussy, L. and Székely, M. (2004), "Medición del desarrollo humano en México. Estudios sobre Desarrollo Humano 2003-6", available at: http://sic.conaculta.gob.mx/ documentos/1006.pdf (accessed 13 July 2017).
- Mahlberg, D. and Obersteiner, M. (2001), *Remeasuring the HDI by Data Envelopment Analysis: Interim Report IR-01-069*, International Institute for Applied Systems Analysis (IIASA), Austria, available at: http://papers.ssm.com/sol3/papers.cfm?abstract_id=1999372 (accessed 13 July 2017).
- Mariano, E.B., Sobreiro, V.A. and Rebelatto, D.A.N. (2015), "Human development and data envelopment analysis: a structured literature review", Omega, Vol. 54, pp. 33-49.
- Martić, M. and Savić, G. (2001), "An application of DEA for comparative analysis and ranking of regions in Serbia with regards to social-economic development", *European Journal of Operational Research*, Vol. 132 No. 2, pp. 343-356.
- Mazaira, Z., Becerra, F. and Hernández, I. (2008), "Bienestar social y desigualdad del ingreso: diferentes enfoques para su medición", *Revista OIDLES*, Vol. 2 No. 5, available at: www.eumed.net/rev/ oidles/05/rlh.htm (accessed 13 July 2017).
- Medina, F. (2001), Consideraciones Sobre el Índice de Gini Para Medir la Concentración Del Ingreso: Estudios Estadísticos y Prospectivos, CEPAL, Chile, available at: http://repositorio.cepal.org/ bitstream/handle/11362/4788/S01020119_es.pdf?sequence=1 (accessed 13 July 2017).
- Navarro, J. and Torres, Z. (2003), "La evaluación de la frontera de eficiencia en el sector eléctrico: un análisis de la frontera de datos (DEA)", *Ciencia Nicolaita*, Vol. 35, pp. 39-58.
- Ordóñez, J.A. (2014), "Teorías del desarrollo y el papel del estado: Desarrollo humano y bienestar, propuesta de un indicador complementario al índice de desarrollo humano en México", *Política y Gobierno*, Vol. 21 No. 2, pp. 409-441.
- Ortiz, J., Marroquín, J. and Ríos, H. (2017), "Factores macroeconómicos vinculados a la pobreza en México", Análisis Económico, Vol. 22 No. 79, pp. 26-51.
- Ospina, R. and Giraldo, O. (2005), "Aproximación a los conceptos de pobreza y distribución del ingreso", *Semestre Económico*, Vol. 8 No. 15, pp. 47-61.
- Pittman, R. (1983), "Multilateral productivity comparisons with undesirable outputs", *The Economic Journal*, Vol. 93 No. 372, pp. 883-891.
- Poveda, A.C. (2011), "Economic development and growth in Colombia: an empirical analysis with super-efficiency DEA and panel data models", *Socio-Economic Planning Sciences*, Vol. 45 No. 4, pp. 154-164.
- Quiroz, S. and Salgado, M.C. (2016), "La desigualdad en México por entidad federativa. Un análisis del índice de Gini: 1990-2014", *Tiempo Económico*, Vol. 11 No. 32, pp. 57-80.
- Ruza, J. (1978), "Génesis y evolución histórica de la teoría de la distribución funcional de la renta", Revista de Economía Política, Vol. 80, pp. 187-206.
- Salinas, J. (1977), "La estructura de la distribución del ingreso como obstáculo al desarrollo económico de América Latina", *Revista de Economía Política*, Vol. 75, pp. 81-132.
- Secretaría de Educación Pública (SEP) (2018), "Sistema de indicadores y pronóstico", available at: www.sep.gob.mx/es/sep1/sep1_Estadisticas (accessed 26 March 2018).
- Serra, D. (2004), Métodos Cuantitativos Para la Toma de Decisiones, Ediciones Gestión, España.
- Stimson, R.J., Stough, R.R. and Roberts, B.H. (2006), *Regional Economic Development: Analysis and Planning Strategy*, Springer.
- Sueyoshi, T. and Goto, M. (2010), "Should the US clean air act include CO2 emission control? Examination by data envelopment analysis", *Energy Policy*, Vol. 38 No. 10, pp. 5902-5911.

JEFAS 25,49	Tello, C. (2010), "Estancamiento económico, desigualdad y pobreza: 1982-2009", <i>Economía UNAM</i> , Vol. 7 No. 19, pp. 5-44.
	Torres, F. and Rojas, A. (2015), "Política económica y política social en México: desequilibrio y saldos", <i>Revista Problemas del Desarrollo</i> , Vol. 46 No. 182, pp. 41-65.
180	United Nations Development Programme (UNDP) (2011), "Informe sobre desarrollo humano, México 2011", available at: http://hdr.undp.org/sites/default/files/nhdr_mexico_2011.pdf (accessed 13 July 2017).
100	UNDP (2016), "Informe sobre desarrollo humano, México 2016", available at: www.mx.undp.org/content/ dam/mexico/docs/Publicaciones/PublicacionesReduccionPobreza/InformesDesarrolloHumano/ idhmovilidadsocial2016/PNUD%20IDH2016.pdf (accessed 30 January 2018).
	UNDP (2018a), "Desarrollo humano: Concepto", available at: http://desarrollohumano.org.gt/desarrollo- humano/concepto/ (accessed 30 January 2018).
	UNDP (2018b), "Human development trends by indicator", available at: http://hdr.undp.org/en/data (accessed 30 January 2018).
	Vargas, C.O. (2009), "Veinte años de estancamiento en la distribución del ingreso de las familias mexicanas: Un enfoque de microdatos", <i>Ensayos Revista de Economía</i> , Vol. 28 No. 1, pp. 81-106.
	Watanabe, M. and Tanaka, K. (2007), "Efficiency analysis of chinese industry: a directional distance function approach", <i>Energy Policy</i> , Vol. 35 No. 12, pp. 6323-6331.

- Yago, M., Lafuente, M. and Losa, A. (2010), "Una aplicación del análisis envolvente de datos a la evaluación del desarrollo: El caso de las entidades federativas de México", in Aceves, L., Estay, J., Noguera, P. and Sánchez, E. (Eds), Realidades y Debates Sobre el Desarrollo, Universidad de Murcia, Spain, pp. 119-142.
- Yáñez, J. (2010), La distribución del ingreso en México 1984-2008: una evaluación de la hipótesis de Kunznets, Universidad Autónoma de Barcelona, Spain, available at: www.ecap.uab.es/ secretaria/docrecerca/jyanez.pdf (accessed 13 July 2017).

Corresponding author

Víctor Giménez can be contacted at: victor.gimenez@uab.cat

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com