La tasa interna de retorno promedio borrosa: desarrollos y aplicaciones

Authors

  • Gastón S. Milanesi Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Argentina

Keywords:

Average internal rate of return, Fuzzy mathematics, Fuzzy average internal rate of return

Abstract

The paper introduces the average internal rate of return (AIRR) into the mathematic fuzzy’s frame, like alternative method for estimating returns in ambiguity situations. In the first part it is developed the AIRR and its fuzzy version like an alternative of return determination under ambiguity situations. Next, with a hypothetical case, the consistency with the present value (PV) in the projects ranking at conflictive situations is illustrated. In case of uncertainty,the equality between the AIRR estimated over the expected cash flows or as expected AIRR is showed. Finally, and like a measurement for estimating average returns in vague situations, it is set out the fuzzy AIRR, comparing results with the fuzzy PV and IRR methods.

Doi: https://doi.org/10.1016/j.jefas.2015.12.001

Downloads

Download data is not yet available.

References

Buckley, J. (1987). The fuzzy mathematics of finance. Fuzzy Sets and Systems, 21, 257–273.

Carlsson, C. y Fuller, R. (2001). On possibilistic mean value and variance fuzzy numbers. Fuzzy Sets and Systems, 122, 772–777.

Chiu, C. y Park, C. (1994). Fuzzy cash flow analysis using present worth criterion. Engineering Economist, 39(2), 113–138.

Chiu, C. y Park, C. (1998). Capital budgeting decisions with fuzzy project. Engineering Economist, 43(2), 125–150.

Dubois, D. y Prade, H. (1980). Fuzzy sets and systems. New York: Academic Press.

Fernández, P. (2014). Valoración de empresas y sensatez (Tercera ed.). Barcelona: IESE Business School-Universidad de Navarra.

Fornero, R. (2012). El valor de los proyectos de inversión con estimaciones probabilisticas y borrosas. XXXII Jornadas Nacionales de Administración Financiera, XXXII, 83–135.

Fuller, R. y Majlender, P.(2003). On eeigthed possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and Systems, 136, 363–374.

Graziani, R. y Veronese, P. (2009). How to compute a mean? The Chisini approach and its applications. The American Statisticians, 63(1), 33–36.

Guerra, L., Magni, C. y Stefanini, L. (2014). Interval and fuzzy average internal rate of return for investment appraisal. Fuzzy Sets and Systems, 257, 217–241.

Hazen, G. (2003). A new perspective on multiples internal rates of returns. The Engineering Economist, 48(1), 31–51.

Hazen, G. (2009). An extensión of internal rate of returns to stochastic cash flow. Management Science, 55(6), 1030–1034.

Iurato, G. (2012). A note on Oscar Chisini mean value definition. Science (QRDS) Quaderni di Ricerca in Didattica/Science (QRDS), 4(1), 7.

Kaufmann, A., Gil Aluja, J. y Terceno, ˜ A. (1994). Matemática para la Economía y Gestión de Empresas (Vol. I, Aritmética de la Incertidumbre). Barcelona, Espana: ˜ Foro Científico S.L.

Magni, C. (2010). Average internal rate of return and investment decision: A new perspective. The Engineering Economist, 55(2), 150–180.

Magni, C. (2013). The internal rate of return approach and the AIRR paradigm: A refutation and a corroboration. (http://ssrn.com/abstract=2172965, Ed.) Working Paper.

Mallo, P., Artola, M. y Pascual, M.(2004). Gestión de la incertidumbre en los negocios. Aplicaciones de la matemática borrosa. Santiago de Chile: RIL editores.

Munenzon, M.(2010). Risk measurementfrom theory to practice: Is your risk metric coherent and empirically justified? Social Science Research Network (SSRN),,. http://ssrn.com.abstract=1605315

Pratt, S. y Grabowski, R. (2008). Cost of capital: Applications and examples (3 rd ed.). New Jersey: John Wiley & Sons.

Rebiaz, B. (2007). Fuzzines and randomness in investment project risk appraisal. Computer Operation Research Journal, 34.

Smith, J. y Nau, R. (1995). Valuing risky projects: Option pricing theory and decision anaysis. Management Science, 5, 795–816.

Yoshida, Y., Yasuda, M., Nakagami, J. y Kurano, M. (2006). A new evaluation of mean value for fuzzy numbers and its application to American options under uncertainty. Fuzzy Sets and Systems, 157, 2614–2626.

Zadeh, L. (1965). Fuzzy sets. Information Control, 3(8), 338–353

Published

2016-06-01

How to Cite

Milanesi, G. S. (2016). La tasa interna de retorno promedio borrosa: desarrollos y aplicaciones. Journal of Economics, Finance and Administrative Science, 21(40), 39–47. Retrieved from https://revistas.esan.edu.pe/index.php/jefas/article/view/152