Un modelo de credit scoring para instituciones de microfinanzas en el marco de Basilea II
DOI:
https://doi.org/10.46631/jefas.2010.v15n28.04Keywords:
Microcredit, institutions of microfinance, Basel II, credit scoring, Logit, IRBAbstract
The growth of microcredit worldwide along with international rules on capital requirements (Basel II) are increasing the competition between microfinance institutions (MFIs) and banks for this business segment. The bank system traditionally has relied on adequate credit scoring models to analyze the risk of payment failures, but this has not been the case in supervised MFIs. The objective of this research is to design a credit scoring model for any institution subjected to supervision and specialized in microcredit as the Development Agency for Small and Micro Enterprise (Entidad de Desarrollo de la Pequeña y Micro Empresa - Edpyme) of the financial system in Peru. The results of this research includes a methodology and the steps needed to design the model, and the assessment and validation process that can be applied in the business area, in particular, to establish an interest rate policy with customers. Eventually, the paper also explains how the model can be used to develop credit risk management under the Basel II IRB approaches.
Downloads
References
Allen, L., DeLong, G., & Saunders, A. (2004). Issues in the Credit Risk Modeling of Retail Markets. Journal of
Banking and Finance, 28, 727-752.
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23(4), 589-609.
Alvarado, G. (2001). Programas de microcrédito rural para pequeños negocios en Piura: Eficiencia y empoderamiento. Proyecto breve abierto de CIES. Lima, Perú: Consorcio de Investigación Económica y Social.
Bellotti, T., & Crook, J. (2007). Credit Scoring with Macroeconomic Variables Using Survival Analysis. Credit
Research Centre-Management School and Economics. Edinburgh, UK: University of Edinburgh.
Basel Committee on Banking Supervision. (2001). The Internal Ratings-Based Approach (Consultative
Document). Basilea, Suiza: Bank for International Settlements-BIS.
Basel Comittee on Banking Supervision. (2004). International Convergence of Capital Measurement and
Capital Standards (Consultative Document). Basilea, Suiza: Bank for International Settlements-BIS
Boyle, M., Crook, J. N., Hamilton, R., & Thomas, L. C. (1992). Methods for Credit Scoring Applied to Slow
Payers. In Thomas, L. C., Crook, J. N., Edelman, D. B. (Eds.), Credit Scoring and Credit Control
(pp. 75-90). Oxford, UK: Clarendon.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees.
Monterey, CA: Wadsworth, Inc.
Carter, C., & Carlett, J. (1987). Assessing Credit Card Applications Using Machine Learning. IEEE Expert,
(3), 71–79.
Coffman, J. Y. (1986). The Proper Role of Tree Analysis in Forecasting the Risk Behaviour of Borrowers.
Management Decision Systems , MDS Reports 3, 4, 7 & 9.
referencias
Davis, R. H., Edelman, D. B., & Gammerman, A. J. (1992). Machine-Learning Algorithms for Credit-Card
Applications. Journal of Management Mathematics, 4(1), 43-51.
Dennis, W. (1995). Fair Lending and Credit Scoring. Mortgage Banking, 56(2), 55-59.
Diallo, B. (2006). Un modele de ‘credit scoring’ pour une institution de microfinance Africaine: le cas
de Nyesigiso au Mali. Recuperado de <http://hal.archives-ouvertes.fr/docs/00/06/91/63/PDF/
s16_05_06diallo.pdf>
Dimitras, A., Zanakis, S., & Zopouninis, C. (1996). A Survey of Business Failures with an Emphasis on Prediction Methods and Industrial Applications. European Journal of Operational Research, 90, 487-513.
Fisher R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2),
-188.
Greene, W. H. (1992). A Statistical Model for Credit Scoring (Working Papers 92-29). New York: Leonard
N. Stern School of Business, New York University.
Hand, D. J. (1981). Discrimination and Classification. Chichester, UK: Wiley.
Hand, D. J., & Henley, W. E. (1997). Statistical Classification Methods in Costumer Credit Scoring: A review.
Journal of the Royal Statistical Association, 160(A/Part3), 523-541.
Kim, J. (2005). A Credit Risk Model for Agricultural Loan Portfolios under the New Basel Capital Accord.
Dissertation submitted to the Office of Graduate Studies of Texas A & M University.
Kleimeier, S., & Dinh, T. (2007). A Credit Scoring Model for Vietnam’s Retail Banking Market. International
Review of Financial Analysis, 16(5), 471-495.
Kolesar, P., & Showers, J. L. (1985). A Robust Credit Screening Model Using Categorical Data.
Management Science, 31, 123-133.
Kulkosky, E. (1996). Credit Scoring Could Have a Downside, Experts Say. American Banker, 161(208), 8.
Makowski, P. (1985). Credit Scoring Branches Out: Decision Tree-Recent Technology. Credit World, 75, 30-37.
Mester, L. (1997). What’s the Point of Credit Scoring? Business Review (Federal Reserve Bank of
Philadelphia), September/October, 3-16.
Milena, E., Miller, M., & Simbaqueba, L. (2005). The Case for Information Sharing by Microfinance Institutions: Empirical Evidence of the Value of Credit Bureau-Type Data in the Nicaraguan Microfinance Sector. New York: The World Bank, mimeo.
Miller, M., & Rojas, D. (2005). Improving Access to Credit for Smes: An Empirical Analysis of the Viability of
Pooled Data SME Credit Scoring Models in Brazil, Colombia & Mexico. New York: The World Bank.
Mures, M. J., García, A., & Vallejo, M. E. (2005). Aplicación del análisis discriminante y regresión logística en el estudio de la morosidad de las entidades financieras. Comparación de resultados. Pecvnia, 1,175-199.
Orgler, Y. E. (1970). A Credit Scoring Model for Commercial Loans. Journal of Money, Credit and Banking,
(4), 435-445.
Orgler, Y. E. (1971). Evaluation of Bank Consumer Loans with Credit Scoring Models. Journal of Bank
Research, 2, 31-37.
Reinke, J. (1998). How to Lend Like Mad and Make a Profit: A Micro-Credit Paradigm Versus the StartUp Fund in South Africa. Journal of Development Studies, 34(3), 44-61.
Ripley, B. D. (1994). Neural Networks and Related Methods for Classification. Journal of the Royal Statistical
Society, Series B(Methodological), 56(3), 409-456.
Rosenberg, E., & Gleit, A. (1994). Quantitative Methods in Credit Management: A Survey. Operations Research, 42, 589-613.
Superintendencia de Banca y Seguros del Perú – SBS. Reglamento para el requerimiento de patrimonio
efectivo por riesgo de crédito. Resolución N° 14.354 del 30/10/2009. (2009). Lima, Perú: Autor.
Schreiner, M. (1999). A Scoring Model of the Risk of Costly Arrears at a Microfinance Lender in Bolivia.
Microfinance Risk Management and Center for Social Development, Washington University in St.
Louis. Recuperado de <http://info.worldbank.org/etools/docs/library/128753/Scoring%20Model%20
Costly%20Arrears%20Bolivia.pdf>.
Schreiner, M. (2000). Credit Scoring for Microfinance: Can It Work?. Microfinance Risk Management
and Center for Social Development, Washington University in St. Louis. Recuperado de
www.microfinance.com/English/Papers/Scoring_ Can_It_Work.pdf>.
Schreiner, M. (2002). Scoring: The Next Breakthrough in Microfinance. Occasional Paper Nº 7, Consultative
Group to Assist the Poorest, Washington D. C.
Sharma, M., & Zeller, M. (1997). Repayment Performance in Group-Based Credit Programs in Bangladesh: An
Empirical Analysis. World Development, 25(10), 1731-1742.
Showers, S. R., & Chakrin, L. M. (1981). Reducing Uncollectable Revenue from Residential Telephone
Customers. Interfaces, 11, 21-31.
Trucharte, C., & Marcelo, A. (2001). Modelos factoriales de riesgo de crédito: El modelo de Basilea II y sus
implicaciones. Actualidad Financiera, 1, 205-218.
Viganò, L. (1993). A Credit-Scoring Model for Development Banks: An African Case Study. Savings and
Development, 17(4), 441-482.
Vogelgesang, U. (2003). Microfinance in Times of Crisis: The Effects of Competition, Rising Indebtness, and
Economic Crisis on Repayment Behaviour. World Development, 31(12), 2085-2114.
Wiginton, J. C. (1980). A Note on the Comparison of Logit and Discriminant Models of Consumer Credit
Behavior. Journal of Financial and Quantitative Analysis, 15(3), 757-770.
Zeller, M. (1998). Determinants of Repayment Performance in Credit Groups: The Role of Program Design, Intra-Group Risk Pooling, and Social Cohesion. Economic Development and Cultural Change, 46(3), 599-620.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Economics, Finance and Administrative Science
This work is licensed under a Creative Commons Attribution 4.0 International License.