Hybrid cluster analysis of customer segmentation of sea transportation users

Authors

  • Bambang Eka Cahyana Faculty of Administrative Sciences, Universitas Brawijaya, Malang, Indonesia
  • Umar Nimran Faculty of Administrative Sciences, Universitas Brawijaya, Malang, Indonesia
  • Hamidah Nayati i Utami Faculty of Administrative Sciences, Universitas Brawijaya, Malang, Indonesia
  • Mohammad Iqbal Faculty of Administrative Sciences, Universitas Brawijaya, Malang, Indonesia

Keywords:

Hybrid cluster analysis, PT pelindo I, Customer satisfaction, Sea transportation users

Abstract

Purpose: The purpose of this study is to apply hybrid cluster analysis in classifying PT Pelindo I customers based on the level of customer satisfaction with passenger services of PT Pelindo I.

Design/methodology/approach: Hybrid cluster analysis is a combination of hierarchical and nonhierarchical cluster analysis. This hybrid cluster analysis appears to optimize the advantages of hierarchical and non-hierarchical methods simultaneously to obtain optimal grouping. Hybrid cluster analysis itself has high flexibility because it can combine all hierarchical and non-hierarchical methods without any limits in the order of analysis used.

Findings: The results showed that 72% of PT Pelindo I customers felt PT Pelindo I service was special, while the remaining 28% felt PT Pelindo I service was good.

Originality/value: In total, 117 customers of PT Pelindo I were involved in a study using the nonprobability sampling method.

DOI:  https://doi.org/10.1108/JEFAS-07-2019-0126

Downloads

Download data is not yet available.

References

Arikunto, S. (2006), Prosedur Penelitian Suatu Pendekatan Praktek, PT. Rineka Cipta, Jakarta.

Cheu, E., Keongg, C. and Zhou, Z. (2004), “On the two-level hybrid clustering algorithm”, International Conference on Artificial Intelligence in Science and Technology.

Chipman, H. and Tibshirani, R. (2005), “Hybrid hierarchical clustering with applications to microarray data”, Biostatistics, Vol. 7 No. 2, pp. 286-301.

Ciptono, F. (2001), Strategi Pemasaran, Andi Offset, Yogyakarta.

Hair, F., Black, W., Babin, B. and Anderson, R. (2010), Multivariate Data Analysis, 7th ed., Pearson, New York, NY.

Kerlinger (2006), Asas-Asas Penelitian Behavioral, Gadjah Mada University Press, Yogyakarta.

Kotler and Keller (2013), “Manajemen pemasaran”, Jilid I Edisi Ke, 13, Erlangga, Jakarta.

Latan, H. (2014), Aplikasi Analisis Data Statistik Untuk Ilmu Sosial Sains Dengan Stata, Bandung: Alfabeta.

Parasuraman (2001), “The behaviorial consequenses of service quality”, Journal of Marketing, Vol. 60 No. 2, p. 60.

Riduwan (2009), Skala Pengukuran Variabel-Variabel Penelitian, Alfabeta, Bandung.

Sekaran, U. (2000), Research Methods for Business: A Skill Building Approach, John Wiley and Sons, Singapore.

Solimun (2010), Analisis Multivariat Pemodelan Struktural Metode Partial Least Square-PLS, CV. Citra, Malang.

Sugiyono (2009), “Metode penelitian kuantitatif”, Kualitatif Dan R&D, Alfabeta, Bandung.

Sukbekti, R. (2017), K-Means Clustering Dan Average Linkage Dalam Pembentukan Portofolio Saham, Seminar Matematika UNY.

Yang, S. and Kang, M. (2009), “Measuring blog engagement: testing a four-dimensional scale”, Public Relations Review, Vol. 35 No. 3.

Downloads

Published

2020-12-01

How to Cite

Cahyana, B. E. ., Nimran, U. ., Utami, H. N. i, & Iqbal, M. . (2020). Hybrid cluster analysis of customer segmentation of sea transportation users. Journal of Economics, Finance and Administrative Science, 25(50), 321–337. Retrieved from https://revistas.esan.edu.pe/index.php/jefas/article/view/46